120 research outputs found

    Laboratory Mouse Models for the Human Genome-Wide Associations

    Get PDF
    The agnostic screening performed by genome-wide association studies (GWAS) has uncovered associations for previously unsuspected genes. Knowledge about the functional role of these genes is crucial and laboratory mouse models can provide such information. Here, we describe a systematic juxtaposition of human GWAS-discovered loci versus mouse models in order to appreciate the availability of mouse models data, to gain biological insights for the role of these genes and to explore the extent of concordance between these two lines of evidence. We perused publicly available data (NHGRI database for human associations and Mouse Genome Informatics database for mouse models) and employed two alternative approaches for cross-species comparisons, phenotype- and gene-centric. A total of 293 single gene-phenotype human associations (262 unique genes and 69 unique phenotypes) were evaluated. In the phenotype-centric approach, we identified all mouse models and related ortholog genes for the 51 human phenotypes with a comparable phenotype in mice. A total of 27 ortholog genes were found to be associated with the same phenotype in humans and mice, a concordance that was significantly larger than expected by chance (p<0.001). In the gene-centric approach, we were able to locate at least 1 knockout model for 60% of the 262 genes. The knockouts for 35% of these orthologs displayed pre- or post-natal lethality. For the remaining non-lethal orthologs, the same organ system was involved in mice and humans in 71% of the cases (p<0.001). Our project highlights the wealth of available information from mouse models for human GWAS, catalogues extensive information on plausible physiologic implications for many genes, provides hypothesis-generating findings for additional GWAS analyses and documents that the concordance between human and mouse genetic association is larger than expected by chance and can be informative

    An NOS3 Haplotype is Protective against Hypertension in a Caucasian Population

    Get PDF
    The endothelial nitric oxide synthase gene (NOS3) has been implicated in the development of hypertension, although the specific role of variants and haplotypes has not been clarified. In this study, the association of three polymorphisms (promoter T786C, intronic 4a/b, and nonsynonymous G894T) was tested in a case-control sample of 230 patients with essential hypertension and 306 healthy controls. Haplotype analysis was also performed. The mutant allele a∗ of the 4a/b polymorphism showed a protective effect against hypertension under a dominant model (odds ratio = 0.64, 95% confidence interval (0.44–0.93)), although this effect was not significant after the adjustment for covariates (P = 0.06). The estimated frequency of the haplotype composed of the T786∗, 4a∗, and G894∗ alleles was significantly higher in controls (5.5%) compared to cases (2%). These results indicate that although individual NOS3 polymorphisms are not associated with hypertension, a rare haplotype of the gene might be protective against the development of hypertension

    The upper and lower respiratory tract microbiome in severe aspiration pneumonia

    Get PDF
    Uncertainty persists whether anaerobic bacteria represent important pathogens in aspiration pneumonia. In a nested case-control study of mechanically ventilated patients classified as macro-aspiration pneumonia (MAsP, n = 56), non-macro-aspiration pneumonia (NonMAsP, n = 91), and uninfected controls (n = 11), we profiled upper (URT) and lower respiratory tract (LRT) microbiota with bacterial 16S rRNA gene sequencing, measured plasma host-response biomarkers, analyzed bacterial communities by diversity and oxygen requirements, and performed unsupervised clustering with Dirichlet Multinomial Models (DMM). MAsP and NonMAsP patients had indistinguishable microbiota profiles by alpha diversity and oxygen requirements with similar host-response profiles and 60-day survival. Unsupervised DMM clusters revealed distinct bacterial clusters in the URT and LRT, with low-diversity clusters enriched for facultative anaerobes and typical pathogens, associated with higher plasma levels of SPD and sCD14 and worse 60-day survival. The predictive inter-patient variability in these bacterial profiles highlights the importance of microbiome study in patient sub-phenotyping and precision medicine approaches for severe pneumonia

    Auto-titrating versus fixed continuous positive airway pressure for the treatment of obstructive sleep apnea: a systematic review with meta-analyses

    Get PDF
    Abstract Background Obstructive sleep apnea is a relatively common disorder that can lead to lost productivity and cardiovascular disease. The form of positive airway treatment that should be offered is unclear. Methods MEDLINE and the Cochrane Central Trials registry were searched for English language randomized controlled trials comparing auto-titrating positive airway pressure (APAP) with continuous positive airway pressure (CPAP) in adults with obstructive sleep apnea (inception through 9/2010). Six researchers extracted information on study design, potential bias, patient characteristics, interventions and outcomes. Data for each study were extracted by one reviewer and confirmed by another. Random effects model meta-analyses were performed for selected outcomes. Results Twenty-four randomized controlled trials met the inclusion criteria. In individual studies, APAP and fixed CPAP resulted in similar changes from baseline in the apnea-hypopnea index, most other sleep study measures and quality of life. By meta-analysis, APAP improved compliance by 11 minutes per night (95% CI, 3 to 19 minutes) and reduced sleepiness as measured by the Epworth Sleepiness Scale by 0.5 points (95% CI, 0.8 to 0.2 point reduction) compared with fixed CPAP. Fixed CPAP improved minimum oxygen saturation by 1.3% more than APAP (95% CI, 0.4 to 2.2%). Studies had relatively short follow-up and generally excluded patients with significant comorbidities. No study reported on objective clinical outcomes. Conclusions Statistically significant differences were found but clinical importance is unclear. Because the treatment effects are similar between APAP and CPAP, the therapy of choice may depend on other factors such as patient preference, specific reasons for non-compliance and cost. </jats:sec

    <i>Xba</i>I GLUT1 Gene Polymorphism and the Risk of Type 2 Diabetes with Nephropathy

    Get PDF
    Altered expression of the facilitated glucose transporter GLUT1 affects pathways implicated in the pathogenesis of diabetic nephropathy. There is indication that variation of GLUT1 gene (SLC2A1) contributes to development of microangiopathy in diabetes mellitus type 2 (DM) patients. A genetic association study involving Caucasians was carried out to investigate the role of XbαI polymorphism in the GLUT1 gene in diabetic nephropathy (DN). Study population (n= 240) consisted of 148 unrelated patients with DM (92 cases with diabetic nephropathy (DN)), and of 92 matched healthy control subjects. Diabetic nephropathy was defined as persistent albuminuria (&gt; 300 mg/24 h) and/or renal failure, in the absence of non-diabetes induced renal disease. The analysis showed that the risk of developing DM and DN in XbaI(−) carriers, when healthy individuals were considered as controls, was two-fold: odds ratio (OR) 2.08 [95% confidence interval (1.14–3.79)]. However, there was no evidence of association between XbaI(−) and DN when patients with DM and without DN were considered as controls: OR = 1.12 (0.55–2.26). Thus, the GLUT1 XbaI(−) allele is associated with DM, and possibly with a more severe form of the disease that can lead to development of DN.</jats:p

    Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome

    Get PDF
    BACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure. METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data. RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and \u3c 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively). CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course

    No evidence of hemoglobin damage by SARS-CoV-2 infection

    Get PDF
    SARS-CoV-2 disease (COVID-19) has affected over 22 million patients worldwide as of August 2020. As the medical community seeks better understanding of the underlying pathophysiology of COVID-19, several theories have been proposed. One widely shared theory suggests that SARS-CoV-2 proteins directly interact with human hemoglobin (Hb) and facilitate removal of iron from the heme prosthetic group, leading to the loss of functional hemoglobin and accumulation of iron. Herein, we refute this theory. We compared clinical data from 21 critically ill COVID-19 patients to 21 non-COVID-19 ARDS patient controls, generating hemoglobin-oxygen dissociation curves from venous blood gases. This curve generated from the COVID-19 cohort matched the idealized oxygen-hemoglobin dissociation curve well (Pearson correlation, R2 = 0.97, P<0.0001; CV(RMSD) = 7.3%). We further analyzed hemoglobin, total bilirubin, lactate dehydrogenase, iron, ferritin, and haptoglobin levels. For all analyzed parameters, patients with COVID-19 had similar levels compared to patients with ARDS without COVID-19. These results indicate that patients with COVID-19 do not exhibit any hemolytic anemia or a shift in the normal hemoglobin-oxygen dissociation curve. We therefore conclude that COVID-19 does not impact oxygen delivery through a mechanism involving red cell hemolysis and subsequent removal of iron from the heme prosthetic group in hemoglobin

    Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients:a feasibility and clinical validity study

    Get PDF
    BACKGROUND: Metagenomic sequencing of respiratory microbial communities for pathogen identification in pneumonia may help overcome the limitations of culture-based methods. We examined the feasibility and clinical validity of rapid-turnaround metagenomics with Nanopore™ sequencing of clinical respiratory specimens. METHODS: We conducted a case-control study of mechanically-ventilated patients with pneumonia (nine culture-positive and five culture-negative) and without pneumonia (eight controls). We collected endotracheal aspirates and applied a microbial DNA enrichment method prior to metagenomic sequencing with the Oxford Nanopore MinION device. For reference, we compared Nanopore results against clinical microbiologic cultures and bacterial 16S rRNA gene sequencing. RESULTS: Human DNA depletion enabled in depth sequencing of microbial communities. In culture-positive cases, Nanopore revealed communities with high abundance of the bacterial or fungal species isolated by cultures. In four cases with resistant clinical isolates, Nanopore detected antibiotic resistance genes corresponding to the phenotypic resistance in antibiograms. In culture-negative pneumonia, Nanopore revealed probable bacterial pathogens in 1/5 cases and Candida colonization in 3/5 cases. In controls, Nanopore showed high abundance of oral bacteria in 5/8 subjects, and identified colonizing respiratory pathogens in other subjects. Nanopore and 16S sequencing showed excellent concordance for the most abundant bacterial taxa. CONCLUSIONS: We demonstrated technical feasibility and proof-of-concept clinical validity of Nanopore metagenomics for severe pneumonia diagnosis, with striking concordance with positive microbiologic cultures, and clinically actionable information obtained from sequencing in culture-negative samples. Prospective studies with real-time metagenomics are warranted to examine the impact on antimicrobial decision-making and clinical outcomes

    Lower respiratory tract myeloid cells harbor SARS-CoV-2 and display an inflammatory phenotype

    Get PDF
    SARS-CoV-2 pneumonia may induce an aberrant immune response with brisk recruitment of myeloid cells into the airspaces. Although the clinical implications are unclear, others have suggested that infiltrating myeloid cells may contribute to morbidity and mortality during SARS-CoV-2 infection.1–3 However, few reports have characterized myeloid cells from the lower respiratory tract, which appears to be the primary site of viral-induced pathology, during severe SARS-CoV-2 pneumonia
    corecore