28 research outputs found

    Comprehensive analysis of draft genomes of two closely related pseudomonas syringae phylogroup 2b strains infecting mono- and dicotyledon host plants

    Get PDF
    Comparison of the prophage region in Pseudomonas syringae strain SM (A) with the corresponding regions in strains 1845 (B) and 2507 (C) using MAUVE software (Darling et al. 2010). (PNG 2118 kb

    Progress in Methods for Copy Number Variation Profiling

    No full text
    Copy number variations (CNVs) are the predominant class of structural genomic variations involved in the processes of evolutionary adaptation, genomic disorders, and disease progression. Compared with single-nucleotide variants, there have been challenges associated with the detection of CNVs owing to their diverse sizes. However, the field has seen significant progress in the past 20–30 years. This has been made possible due to the rapid development of molecular diagnostic methods which ensure a more detailed view of the genome structure, further complemented by recent advances in computational methods. Here, we review the major approaches that have been used to routinely detect CNVs, ranging from cytogenetics to the latest sequencing technologies, and then cover their specific features

    Methylation profile of induced pluripotent stem cells generated by integration and integration-free approaches

    No full text
    The genetic reprogramming technology allows generation of induced pluripotent stem cells (iPSCs) from somatic cells (Takahashi and Yamanaka, 2006) [1]. iPSCs have the ability to self-renew, and to differentiate into any type of somatic cells, and are considered as a promising tool for drug development, disease modeling, and regenerative medicine. The reprogramming factors (oct4, sox2, klf4, c-myc) can be delivered to the cell nucleus either by vectors integrating into the genome (lentiviruses, retroviruses) or by non-integrative methods (e.g., plasmids, Sendai virus, synthetic mRNAs and recombinant proteins). To evaluate the contribution of the reprogramming process isogenic system should be utilized (Shutova et al., 2016) [2]. Isogenic iPSC lines, obtained in different ways can serve the ideal system to investigate DNA methylation changes. The data presented in this article report methylation profiles for iPSC lines derived from fibroblasts of a healthy donor and PARK8-associated Parkinson's disease patient via integrating (lentiviral transfection) and non-integrating (Sendai virus infection) reprogramming using an Illumina 450K Methylation BeadChip platform. The data on DNA methylation of neurons differentiated from iPSC lines are also provided here. Keywords: Induced pluripotent stem cells, Illumina 450К Methylation BeadChip, DNA methylation, Sendai virus reprogramming, Lentiviral reprogrammin

    Peptidome profiling dataset of ovarian cancer and non-cancer proximal fluids: Ascites and blood sera

    No full text
    Despite a large number of proteomic studies of biological fluids from ovarian cancer patients, there is a lack of sensitive screening methods in clinical practice (Kim et al., 2016) (DOI:https://doi.org/10.1111/cas.12987 [1]). Low molecular weight endogenous peptides more easily diffuse across endothelial barriers than proteins and can be more relevant biomarker candidates (Meo et al., 2016) (DOI:https://doi.org/10.18632/oncotarget.8931 [2], (Bery et al., 2014) DOI:https://doi.org/10.1186/1559-0275-11-13 [3], (Huang et al., 2018) DOI:https://doi.org/10.1097/IGC.0000000000001166 [4]). Detailed peptidomic analysis of 26 ovarian cancer and 15 non-cancer samples of biological fluids (ascites and sera) were performed using TripleTOF 5600+ mass-spectrometer. Prior to LC-MS/MS analysis, peptides were extracted from biological fluids using anion exchange sorbent with subsequent peptide desorption from the surface of highly abundant proteins. In total, we identified 4874 peptides; 3123 peptides were specific for the ovarian cancer samples. The mass-spectrometry peptidomics data presented in this data article have been deposited to the ProteomeXchange Consortium (Deutsch et al., 2017) (DOI:https://doi.org/10.1093/nar/gkw936 [5]) via the PRIDE partner repository with the dataset identifier PXD009382 and https://doi.org/10.6019/PXD009382, http://www.ebi.ac.uk/pride/archive/projects/PXD009382

    Peptidomics dataset: Blood plasma and serum samples of healthy donors fractionated on a set of chromatography sorbents

    No full text
    Blood as connective tissue potentially contains evidence of all processes occurring within the organism, at least in trace amounts (Petricoin et al., 2006) [1]. Because of their small size, peptides penetrate cell membranes and epithelial barriers more freely than proteins. Among the peptides found in blood, there are both fragments of proteins secreted by various tissues and performing their function in plasma and receptor ligands: hormones, cytokines and mediators of cellular response (Anderson et al., 2002) [2]. In addition, in minor amounts, there are peptide disease markers (for example, oncomarkers) and even foreign peptides related to pathogenic organisms and infection agents. To propose an approach for detailed peptidome characterization, we carried out an LC–MS/MS analysis of blood serum and plasma samples taken from 20 healthy donors on a TripleTOF 5600+ mass-spectrometer. We prepared samples based on our previously developed method of peptide desorption from the surface of abundant blood plasma proteins followed by standard chromatographic steps (Ziganshin et al., 2011) [3]. The mass-spectrometry peptidomics data presented in this article have been deposited to the ProteomeXchange Consortium (Deutsch et al., 2017) [4] via the PRIDE partner repository with the dataset identifier PXD008141 and 10.6019/PXD008141

    Substitutions in SurA and BamA Lead to Reduced Susceptibility to Broad Range Antibiotics in Gonococci

    No full text
    There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset of drug resistance in N. gonorrhoeae caused by amino acid substitutions in the periplasmic chaperone SurA and the β-barrel assembly machinery component BamA. Here, we investigated the i19.05 clinical isolate with mutations in corresponding genes along with reduced susceptibility to penicillin, tetracycline, and azithromycin. The mutant strain NG05 (surAmut bamAmut, and penAmut) was obtained using the pan-susceptible n01.08 clinical isolate as a recipient in the transformation procedure. Comparative proteomic analysis of NG05 and n01.08 strains revealed significantly increased levels of other chaperones, Skp and FkpA, and some transport proteins. Efflux pump inhibition experiments demonstrated that the reduction in sensitivity was achieved due to the activity of efflux pumps. We hypothesize that the described mutations in the surA and bamA genes cause the qualitative and quantitative changes of periplasmic chaperones, which in turn alters the function of synthesized cell envelope proteins

    Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells

    No full text
    Abstract Background Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. Methods To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. Results Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. Conclusions Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy
    corecore