1,696 research outputs found

    Nuclear star cluster formation in energy-space

    Full text link
    In a virialized stellar system, the mean-square velocity is a direct tracer of the energy per unit mass of the system. Here, we exploit this to estimate and compare root-mean-square velocities for a large sample of nuclear star clusters and their host (late- or early-type) galaxies. Traditional observables, such as the radial surface brightness and second-order velocity moment profiles, are subject to short-term variations due to individual episodes of matter infall and/or star formation. The total mass, energy and angular momentum, on the other hand, are approximately conserved. Thus, the total energy and angular momentum more directly probe the formation of galaxies and their nuclear star clusters, by offering access to more fundamental properties of the nuclear cluster-galaxy system than traditional observables. We find that there is a strong correlation, in fact a near equality, between the root-mean-square velocity of a nuclear star cluster and that of its host. Thus, the energy per unit mass of a nuclear star cluster is always comparable to that of its host galaxy. We interpret this as evidence that nuclear star clusters do not form independently of their host galaxies, but rather that their formation and subsequent evolution are coupled. We discuss how our results can potentially be used to offer a clear and observationally testable prediction to distinguish between the different nuclear star cluster formation scenarios, and/or quantify their relative contributions.Comment: 12 pages, 3 figures, 4 tables; accepted for publication in MNRA

    Prediction of sanding in subsurface hydrocarbon reservoirs.

    Get PDF
    Sand production in oil and gas wells can occur if the fluid velocity exceeds a certain value. Due to drilling operations, the mechanical stresses can exceed the load bearing capacity of the rock. As the local stresses exceed certain level, a certain amount of rock is fractured into sand. Then, the sand is carried by the fluid through the wellbore depending on the flow rate. The amount of the solids can be less than a few grams per cubic meter of reservoir fluid or an essential amount. In the later case erosion of the rock and removing sufficient quantities of rock can occur. This can produce subsurface cavities which collapse and destroy the well. When sanding is unavoidable it is necessary to estimate the characteristics of the process. Our aim was to generate a simple one-dimensional local model, which predicts the volume of sanding, the radius and the porosity of the yielded zone. Such model will help the company in the development of complex 3D models

    Anomalous nucleation far from equilibrium

    Full text link
    We present precision Monte Carlo data and analytic arguments for an asymmetric exclusion process, involving two species of particles driven in opposite directions on a 2Ă—L2 \times L lattice. We propose a scenario which resolves a stark discrepancy between earlier simulation data, suggesting the existence of an ordered phase, and an analytic conjecture according to which the system should revert to a disordered state in the thermodynamic limit. By analyzing the finite size effects in detail, we argue that the presence of a single, seemingly macroscopic, cluster is an intermediate stage of a complex nucleation process: In smaller systems, this cluster is destabilized while larger systems allow the formation of multiple clusters. Both limits lead to exponential cluster size distributions which are, however, controlled by very different length scales.Comment: 5 pages, 3 figures, one colum

    Voting and Catalytic Processes with Inhomogeneities

    Full text link
    We consider the dynamics of the voter model and of the monomer-monomer catalytic process in the presence of many ``competing'' inhomogeneities and show, through exact calculations and numerical simulations, that their presence results in a nontrivial fluctuating steady state whose properties are studied and turn out to specifically depend on the dimensionality of the system, the strength of the inhomogeneities and their separating distances. In fact, in arbitrary dimensions, we obtain an exact (yet formal) expression of the order parameters (magnetization and concentration of adsorbed particles) in the presence of an arbitrary number nn of inhomogeneities (``zealots'' in the voter language) and formal similarities with {\it suitable electrostatic systems} are pointed out. In the nontrivial cases n=1,2n=1, 2, we explicitly compute the static and long-time properties of the order parameters and therefore capture the generic features of the systems. When n>2n>2, the problems are studied through numerical simulations. In one spatial dimension, we also compute the expressions of the stationary order parameters in the completely disordered case, where nn is arbitrary large. Particular attention is paid to the spatial dependence of the stationary order parameters and formal connections with electrostatics.Comment: 17 pages, 6 figures, revtex4 2-column format. Original title ("Are Voting and Catalytic Processes Electrostatic Problems ?") changed upon editorial request. Minor typos corrected. Published in Physical Review

    Multifunctionality of rapeseed meal protein isolates prepared by sequential isoelectric precipitation

    Get PDF
    Rapeseed meal is a by-product of the oil-producing industry with a currently underesti-mated application. Two protein isolates, PI2.5–8.5 or PI10.5–2.5, were obtained from industrial rapeseed meal after treatment with an aqueous ethanol solution. The alkaline-extracted proteins were sequen-tially precipitated by two different modes, from pH 10.5 to 2.5, and vice versa, from 2.5 to 8.5, with a step of 1 pH unit. The preparation approach influenced both the functional and antioxidant properties of the isolates. The PI10.5–2.5 exhibited higher water and oil absorption capacities than PI2.5–8.5, reaching 2.68 g H2O/g sample and 2.36 g oil/g sample, respectively. The emulsion stability of the PI2.5–8.5, evaluated after heating at 80 °C, was either 100% or close to 100% for all pH values studied (from 2 to 10), except for pH 6 where it reached 93.87%. For the PI10.5–2.5, decreases in the emulsion stability were observed at pH 8 (85.71%) and pH 10 (53.15%). In the entire concentration range, the PI10.5–2.5 exhibited a higher scavenging ability on 2,2-diphenyl-1-picryl hydrazyl (DPPH) and hydroxyl radicals than PI2.5–8.5 as evaluated by DPPH and 2-deoxyribose assays, respectively. At the highest concentration studied, 1.0%, the neutralization of DPPH radicals by PI10.5–2 reached half of that exhibited by synthetic antioxidant butylhydroxytoluene (82.65%). At the same concentration, the inhibition of hydroxyl radicals by PI10.5–2 (71.25%) was close to that achieved by mannitol (75.62%), which was used as a positive control. Established antioxidant capacities add value to the protein isolates that can thus be used as both emulsifiers and antioxidants.info:eu-repo/semantics/publishedVersio
    • …
    corecore