22 research outputs found
Habitat openness and predator abundance determine predation risk of warningly colored longhorn beetles (Cerambycidae) in temperate forest
Organisms have evolved different defense mechanisms, such as crypsis and mimicry, to avoid detection and recognition by predators. A prominent example is Batesian mimicry, where palatable species mimic unpalatable or toxic ones, such as Clytini (Coleoptera: Cerambycidae) that mimic wasps. However, scientific evidence for the effectiveness of Batesian mimicry in Cerambycids in natural habitats is scarce. We investigated predation of warningly and nonwarningly colored Cerambycids by birds in a temperate forest using beetle dummies. Dummies mimicking Tetropium castaneum, Leptura aethiops, Clytus arietis, and Leptura quadrifasciata were exposed on standing and laying deadwood and monitored predation events by birds over one season. The 20 surveyed plots differed in their structural complexity and canopy openness due to different postdisturbance logging strategies. A total of 88 predation events on warningly colored beetle dummies and 89 predation events on nonwarningly colored beetle dummies did not reveal the difference in predation risk by birds. However, predation risk increased with canopy openness, bird abundance, and exposure time, which peaked in July. This suggests that environmental factors have a higher importance in determining predation risk of warningly and nonwarningly colored Cerambycidae than the actual coloration of the beetles. Our study showed that canopy openness might be important in determining the predation risk of beetles by birds regardless of beetles' warning coloration. Different forest management strategies that often modify canopy openness may thus alter predator-prey interactions
Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests
Aim
The tinder fungus Fomes fomentarius is a pivotal wood decomposer in European beech Fagus sylvatica forests. The fungus, however, has regionally declined due to centuries of logging. To unravel biogeographical drivers of arthropod communities associated with this fungus, we investigated how space, climate and habitat amount structure alpha and beta diversity of arthropod communities in fruitbodies of F. fomentarius.
Location
Temperate zone of Europe.
Taxon
Arthropods.
Methods
We reared arthropods from fruitbodies sampled from 61 sites throughout the range of European beech and identified 13 orders taxonomically or by metabarcoding. We estimated the total number of species occurring in fruitbodies of F. fomentarius in European beech forests using the Chao2 estimator and determined the relative importance of space, climate and habitat amount by hierarchical partitioning for alpha diversity and generalized dissimilarity models for beta diversity. A subset of fungi samples was sequenced for identification of the fungus’ genetic structure.
Results
The total number of arthropod species occurring in fruitbodies of F. fomentarius across European beech forests was estimated to be 600. Alpha diversity increased with increasing fruitbody biomass; it decreased with increasing longitude, temperature and latitude. Beta diversity was mainly composed by turnover. Patterns of beta diversity were only weakly linked to space and the overall explanatory power was low. We could distinguish two genotypes of F. fomentarius, which showed no spatial structuring.
Main conclusion
Fomes fomentarius hosts a large number of arthropods in European beech forests. The low biogeographical and climatic structure of the communities suggests that fruitbodies represent a habitat that offers similar conditions across large gradients of climate and space, but are characterized by high local variability in community composition and colonized by species with high dispersal ability. For European beech forests, retention of trees with F. fomentarius and promoting its recolonization where it had declined seems a promising conservation strategy
Nachhaltiges Management von natürlichen Störungen in Wäldern
Owing to climate change, natural forest disturbances and consecutive salvage logging are drastically increasing worldwide, consequently increasing the importance of understanding how these disturbances would affect biodiversity conservation and provision of ecosystem services.
In chapter II, I used long-term water monitoring data and mid-term data on α-diversity of twelve species groups to quantify the effects of natural disturbances (windthrow and bark beetle) and salvage logging on concentrations of nitrate and dissolved organic carbon (DOC) in streamwater and α-diversity. I found that natural disturbances led to a temporal increase of nitrate concentrations in streamwater, but these concentrations remained within the health limits recommended by the World Health Organization for drinking water. Salvage logging did not exert any additional impact on nitrate and DOC concentrations, and hence did not affect streamwater quality. Thus, neither natural forest disturbances in watersheds nor associated salvage logging have a harmful effect on the quality of the streamwater used for drinking water. Natural disturbances increased the α-diversity in eight out of twelve species groups. Salvage logging additionally increased the α-diversity of five species groups related to open habitats, but decreased the biodiversity of three deadwood-dependent species groups.
In chapter III, I investigated whether salvage logging following natural disturbances (wildfire and windthrow) altered the natural successional trajectories of bird communities. I compiled data on breeding bird assemblages from nine study areas in North America, Europe and Asia, over a period of 17 years and tested whether bird community dissimilarities changed over time for taxonomic, functional and phylogenetic diversity when rare, common and dominant species were weighted differently. I found that salvage logging led to significantly larger dissimilarities than expected by chance and that these dissimilarities persisted over time for rare, common and dominant species, evolutionary lineages, and for rare functional groups. Dissimilarities were highest for rare, followed by common and dominant species.
In chapter IV, I investigated how β-diversity of 13 taxonomic groups would differ in intact, undisturbed forests, disturbed, unlogged forests and salvage-logged forests 11 years after a windthrow and salvage logging. The study suggests that both windthrow and salvage logging drive changes in between-treatment β-diversity, whereas windthrow alone seems to drive changes in within-treatment β-diversity. Over a decade after the windthrow at the studied site, the effect of subsequent salvage logging on within-treatment β-diversity was no longer detectable but the effect on between-treatment β-diversity persisted, with more prominent changes in saproxylic groups and rare species than in non-saproxylic groups or common and dominant species.
Based on these results, I suggest that salvage logging needs to be carefully weighed against its long-lasting impact on communities of rare species. Also, setting aside patches of naturally disturbed areas is a valuable management alternative as these patches would enable post-disturbance succession of bird communities in unmanaged patches and would promote the conservation of deadwood-dependent species, without posing health risks to drinking water sources.In Folge des Klimawandels treten in Wäldern vermehrt natürliche Störungen auf, wodurch wiederum die Zahl an nachfolgenden Sanitärhieben (Räumungen) drastisch gestiegen ist. Wie sich natürliche Störungen und Sanitärhiebe auf die biologische Vielfalt und die Bereitstellung von Ökosystemleistungen auswirken können, ist bisher jedoch nur unzureichend bekannt.
In Kapitel II nutzte ich langfristige Wassermonitoringdaten und mittelfristige Biodiversitätsdaten über zwölf Artengruppen, um die Effekte von natürlichen Störungen (Windwurf und Borkenkäfer) und Sanitärhieben auf die Konzentrationen von Nitraten und gelöster organischer Kohlenstoffe (GOK) in Bächen und Artenzahl zu quantifizieren. Die Ergebnisse zeigen, heraus, dass natürliche Störungen zu einer temporären Erhöhung der Nitratwerte führen, welche dennoch laut Angaben der Weltgesundheitsorganisation immer noch als unbedenklich eingestuft werden können. Die Sanitärhiebe hatten keinen zusätzlichen Einfluss auf die Nitrat- und GOK-Konzentrationen und daher keinen Einfluss auf die Wasserqualität. Daraus lässt sich schließen, dass sich weder natürliche Waldstörungen in Wassereinzugsgebieten noch die damit verbundenen Sanitärhiebe auf die Trinkwasserqualität aus auswirken. Natürliche Störungen erhöhten die Artenzahlen in acht von zwölf Artengruppen. Zusätzlich erhöhten die Sanitärhiebe die Artenzahlen von fünf Artengruppen, welche auf offene Lebensräume angewiesen sind, verringerte jedoch die Artenzahlen von drei xylobionte Artengruppen.
In Kapitel III habe ich untersucht, ob Sanitärhiebe nach natürlichen Waldstörungen zu sukzessiven Veränderungen der Vogelgemeinschaften führen. Hierzu habe ich die taxonomische, funktionelle und phylogenetische Diversität von Brutvogelgemeinschaften aus neun Untersuchungsregionen in Nordamerika, Europa und Asien über die Zeit von 17 Jahren verglichen und analysiert, ob sich das jeweilige Diversitätsmaß verändert, wenn seltene, häufige und dominante Arten unterschiedlich gewichtet werden. Ich konnte zeigen, dass Sanitärhiebe zu signifikant größeren Unterschieden geführt haben als zufällig zu erwarten gewesen sind und dass diese Unterschiede über die Zeit sowohl für seltene, häufige und dominante Arten, als auch für evolutionäre Linien, und funktionelle Gruppen fortdauern. Diese Unterschiede waren am größten für seltene, gefolgt von häufigen und dominanten Arten.
In Kapitel IV untersuchte ich wie sich die β-Diversität von 13 taxonomischen Gruppen zwischen ungestörten Wäldern, gestörten und ungeräumten Wäldern sowie gestörten und geräumten Wäldern 11 Jahre nach Windwurf und anschließender Räumung unterscheidet. Die Ergebnisse deuten darauf hin, dass sowohl Windwurf als auch Räumung Änderungen in der β-Diversität bewirken. Windwurf allein jedoch scheint diese Änderungen in der β-Diversität innerhalb der Behandlung bewirken zu können. Über ein Jahrzehnt nach dem Windwurf war der Effekt des Sanitärhiebes auf die β-Diversität innerhalb der Behandlung nicht mehr nachweisbar. Der Effekt auf die β-Diversität zwischen den Behandlungen blieb jedoch bestehen, wobei sich die xylobionten Gruppen und seltenen Arten stärker veränderten als die nicht-xylobionten Gruppen oder häufigen und dominanten Arten.
Basierend auf diesen Ergebnissen schlage ich vor, dass der Einsatz von Sanitärhieben sorgfältig gegen ihre langfristigen Auswirkungen auf Gemeinschaften seltener Arten abgewogen werden muss. Zusätzlich, besteht mit dem Belassen von natürlich gestörten Waldgebieten eine wertvolle Managementalternative, da diese Flächen eine natürliche Entwicklung von Vogelgemeinschaften ermöglichen und xylobionte Arten fördern, ohne dass die Trinkwasserqualität negativ beeinträchtigt wird
Deviant morphology of the root canal system in mandibular premolars: clinical cases
Numerous cases of aberrant root and root canal morphology have been described, still diversion occurs more frequently in premolars and molars. To the dental researcher, the aberrations in the mandibular second premolars afford a vast field of interest. The current report presents a clinical case which demonstrates a simplified therapeutic protocol for re-treatment of Vertucci type V root canals. Endodontic access is gained by expanding the endodontic cavity. The instrumentation (preflaring and final preparation) of the root canal system is performed using predominantly hand files in order to preserve to the maximum the tactile feedback in the apical part of the ramification. Obturation is performed through hydraulic condensation. Postoperative radiographs show sufficient three-dimensional sealing of all portals of exit with excellent healing result
How much is enough – estimating set-aside areas in naturally disturbed forests
The amount of naturally disturbed forests in the Northern Hemisphere has increased as a consequence of global change. Natural disturbances, such as wildfires, windstorms and insect outbreaks affect billions of trees and cause significant economic losses. Post-disturbance logging is a common practice globally to 'salvage' some of these economic returns. However, salvage logging can have negative effects on ecosystem functioning and biodiversity. Those taxa, which depend on deadwood (i.e. saproxylic), are most affected. Hence, scientists increasingly encourage the retention of disturbance-affected areas as a main tool to omit the negative effects of salvage logging on biodiversity. However, this retention compels forests managers on balancing between conservation of wood-dependent taxa and capturing economic returns. Therefore, it is important to know, how much biodiversity can be preserved if certain portions (e.g. 50 %) of disturbance-affected stands are salvage logged. We compiled data from published studies from North America (USA, Canada) and Europe (Spain, Switzerland, Germany and Poland) that compared species richness of nine taxonomic groups in salvaged and unsalvaged disturbance-affected forest stands. We modelled the conservation value of disturbance-affected stands with different portions of simulated salvage logging. The conservation value was defined as the sum of species occurring in unsalvaged plots relative to the cover of unsalvaged plots. The results showed that the number of species in unsalvaged plots decreased proportionally to the decrease of unsalvaged plots' cover. Therefore, by retaining 50 % of the disturbance-affected plots, approximately 50 % of the species occurring in unsalvaged plots, mainly deadwood dependent species, was preserved. However, there were differences between the taxonomic groups. For instance, the conservation value of saproxylic taxa (saproxylic beetles, fungi, epixylic mosses and lichens) decreased steeper compared to non-saproxylic taxa (plants, epigaic mosses, spiders, carabids and birds). This finding indicates that depending on the retention strategy decision makers could facilitate different taxonomic groups. In the talk, the effect of different retention scenarios on different taxa will be illustrated. Furthermore, the best strategies for managing naturally disturbed forests will be highlighted.peerReviewe
Biofilm reactor calibration for in vitro investigation of composite biodegradation
Introduction: The majority of biodegradation studies of composite materials use simplified models of microbial biofilm despite the apparent diversity of the oral microbiota. The use of in vitro systems of “artificial mouth” design is a step towards clarifying the synergistic effect that microbial plaque and human saliva have on composite degradation. Aim: Establishment of functional parameters for in vitro reproduction of oral biofilms via biofilm reactor systems. Materials and methods: The CDC Biofilm Reactor system consists of eight polypropylene sticks. The rod cover and the retaining plates are mounted in a 1-dm glass cylinder with an outlet side opening. The laboratory bioreactor has a working volume of 340 ml. The device is equipped with a four-blade magnetic stirrer. The system also includes gauging appliances and executive mechanisms for controlling and adjusting the basic parameters of the process. Results: Determination of the operating volume of the reactor is performed prior to the experiment along with the time of reach and stabilization of the set temperature in the design which is 60 min at 120 rpm. A mathematical model is used to calculate the rate of delivery of growth medium - 11 millilitres per minute. The bioreactor is sterilized by 0.3% neomycin solution for 24 hours. Prior to the experiment the system is cleansed (via passage) with sterile water for 60 minutes. Conclusions: The pre-calibration of a bioreactor system allows specification and refinement of its working parameters, thus engaging for accurate reproduction of the environmental conditions in the oral cavity
Biofilm reactor calibration for in vitro investigation of composite biodegradation
Introduction: The majority of biodegradation studies of composite materials use simplified models of microbial biofilm despite the apparent diversity of the oral microbiota. The use of in vitro systems of “artificial mouth” design is a step towards clarifying the synergistic effect that microbial plaque and human saliva have on composite degradation. Aim: Establishment of functional parameters for in vitro reproduction of oral biofilms via biofilm reactor systems. Materials and methods: The CDC Biofilm Reactor system consists of eight polypropylene sticks. The rod cover and the retaining plates are mounted in a 1-dm glass cylinder with an outlet side opening. The laboratory bioreactor has a working volume of 340 ml. The device is equipped with a four-blade magnetic stirrer. The system also includes gauging appliances and executive mechanisms for controlling and adjusting the basic parameters of the process. Results: Determination of the operating volume of the reactor is performed prior to the experiment along with the time of reach and stabilization of the set temperature in the design which is 60 min at 120 rpm. A mathematical model is used to calculate the rate of delivery of growth medium - 11 millilitres per minute. The bioreactor is sterilized by 0.3% neomycin solution for 24 hours. Prior to the experiment the system is cleansed (via passage) with sterile water for 60 minutes. Conclusions: The pre-calibration of a bioreactor system allows specification and refinement of its working parameters, thus engaging for accurate reproduction of the environmental conditions in the oral cavity