20 research outputs found

    Patients with early rheumatoid arthritis exhibit elevated autoantibody titers against mildly oxidized low-density lipoprotein and exhibit decreased activity of the lipoprotein-associated phospholipase A(2)

    Get PDF
    Rheumatoid arthritis is a chronic inflammatory disease, associated with an excess of cardiovascular morbidity and mortality due to accelerated atherosclerosis. Oxidized low-density lipoprotein (oxLDL), the antibodies against oxLDL and the lipoprotein-associated phospholipase A(2 )(Lp-PLA(2)) may play important roles in inflammation and atherosclerosis. We investigated the plasma levels of oxLDL and Lp-PLA(2 )activity as well as the autoantibody titers against mildly oxLDL in patients with early rheumatoid arthritis (ERA). The long-term effects of immunointervention on these parameters in patients with active disease were also determined. Fifty-eight ERA patients who met the American College of Rheumatology criteria were included in the study. Patients were treated with methotrexate and prednisone. Sixty-three apparently healthy volunteers also participated in the study and served as controls. Three different types of mildly oxLDL were prepared at the end of the lag, propagation and decomposition phases of oxidation. The serum autoantibody titers of the IgG type against all types of oxLDL were determined by an ELISA method. The plasma levels of oxLDL and the Lp-PLA(2 )activity were determined by an ELISA method and by the trichloroacetic acid precipitation procedure, respectively. At baseline, ERA patients exhibited elevated autoantibody titers against all types of mildly oxLDL as well as low activity of the total plasma Lp-PLA(2 )and the Lp-PLA(2 )associated with the high-density lipoprotein, compared with controls. Multivariate regression analysis showed that the elevated autoantibody titers towards oxLDL at the end of the decomposition phase of oxidation and the low plasma Lp-PLA(2 )activity are independently associated with ERA. After immunointervention autoantibody titers against all types of oxLDL were decreased in parallel to the increase in high-density lipoprotein-cholesterol and high-density lipoprotein-Lp-PLA(2 )activity. We conclude that elevated autoantibody titers against oxLDL at the end of the decomposition phase of oxidation and low plasma Lp-PLA(2 )activity are feature characteristics of patients with ERA, suggesting an important role of these parameters in the pathophysiology of ERA as well as in the accelerated atherosclerosis observed in these patients

    Atherogenic lipid profile is a feature characteristic of patients with early rheumatoid arthritis: effect of early treatment – a prospective, controlled study

    Get PDF
    We investigated lipid profiles and lipoprotein modification after immuno-intervention in patients with early rheumatoid arthritis (ERA). Fifty-eight patients with ERA who met the American College of Rheumatology (ACR) criteria were included in the study. These patients had disease durations of less than one year and had not had prior treatment for it. Smokers or patients suffering from diabetes mellitus, hypothyroidism, liver or kidney disease, Cushing's syndrome, obesity, familiar dyslipidemia and those receiving medications affecting lipid metabolism were excluded from the study. Sixty-three healthy volunteers (controls) were also included. Patients were treated with methotrexate and prednisone. Lipid profiles, disease activity for the 28 joint indices score (DAS-28) as well as ACR 50% response criteria were determined for all patients. The mean DAS-28 at disease onset was 5.8 ± 0.9. After a year of therapy, 53 (91.3%) patients achieved the ACR 20% response criteria, while 45 (77.6%) attained the ACR 50% criteria. In addition, a significant decrease in the DAS-28, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were observed. ERA patients exhibited higher serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides, whereas their serum high-density lipoprotein cholesterol (HDL-C) levels were significantly lower compared to controls. As a consequence, the atherogenic ratio of TC/HDL-C as well as that of LDL-C/HDL-C was significantly higher in ERA patients compared to controls. After treatment, a significant reduction of the atherogenic ratio of TC/HDL-C as well as that of LDL-C/HDL-C was observed, a phenomenon primarily due to the increase of serum HDL-C levels. These changes were inversely correlated with laboratory changes, especially CRP and ESR. In conclusion, ERA patients are characterized by an atherogenic lipid profile, which improves after therapy. Thus, early immuno-intervention to control disease activity may reduce the risk of the atherosclerotic process and cardiovascular events in ERA patients

    Cyclin and DNA distributed cell cycle model for GS-NS0 cells.

    No full text
    Mammalian cell cultures are intrinsically heterogeneous at different scales (molecular to bioreactor). The cell cycle is at the centre of capturing heterogeneity since it plays a critical role in the growth, death, and productivity of mammalian cell cultures. Current cell cycle models use biological variables (mass/volume/age) that are non-mechanistic, and difficult to experimentally determine, to describe cell cycle transition and capture culture heterogeneity. To address this problem, cyclins-key molecules that regulate cell cycle transition-have been utilized. Herein, a novel integrated experimental-modelling platform is presented whereby experimental quantification of key cell cycle metrics (cell cycle timings, cell cycle fractions, and cyclin expression determined by flow cytometry) is used to develop a cyclin and DNA distributed model for the industrially relevant cell line, GS-NS0. Cyclins/DNA synthesis rates were linked to stimulatory/inhibitory factors in the culture medium, which ultimately affect cell growth. Cell antibody productivity was characterized using cell cycle-specific production rates. The solution method delivered fast computational time that renders the model's use suitable for model-based applications. Model structure was studied by global sensitivity analysis (GSA), which identified parameters with a significant effect on the model output, followed by re-estimation of its significant parameters from a control set of batch experiments. A good model fit to the experimental data, both at the cell cycle and viable cell density levels, was observed. The cell population heterogeneity of disturbed (after cell arrest) and undisturbed cell growth was captured proving the versatility of the modelling approach. Cell cycle models able to capture population heterogeneity facilitate in depth understanding of these complex systems and enable systematic formulation of culture strategies to improve growth and productivity. It is envisaged that this modelling approach will pave the model-based development of industrial cell lines and clinical studies

    Correlation between serum levels of high-density lipoprotein-cholesterol and autoantibody titers against oxidized low-density lipoprotein

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Patients with early rheumatoid arthritis exhibit elevated autoantibody titers against mildly oxidized low-density lipoprotein and exhibit decreased activity of the lipoprotein-associated phospholipase A"</p><p>http://arthritis-research.com/content/9/1/R19</p><p>Arthritis Research & Therapy 2007;9(1):R19-R19.</p><p>Published online 27 Feb 2007</p><p>PMCID:PMC1860077.</p><p></p> Correlation between serum levels of high-density lipoprotein (HDL)-cholesterol and autoantibody titers against oxidized low-density lipoprotein in the propagation phase (oxLDL) and oxidized low-density lipoprotein in the decomposition phase (oxLDL) in early rheumatoid arthritis patients at baseline. Correlation between HDL-associated lipoprotein-associated phospholipase A(HDL-Lp-PLA) activity and autoantibody titers against oxLDLin early rheumatoid arthritis patients at baseline

    Modelling of control experiments.

    No full text
    <p>A) Cell growth and viability, B) Glucose and lactate concentration profiles, C) Glutamate and mAb concentration profiles, D) Cell cycle distribution.</p

    Model prediction of an undisturbed cell cycle experiment.

    No full text
    <p>A) Cell growth and viability, B) Glucose and lactate concentration profiles, C) Glutamate and mAb concentration profiles, D) Cell cycle distribution.</p
    corecore