5 research outputs found

    Predictors of Inappropriate Proton Pump Inhibitors Use in Elderly Patients

    No full text
    Introduction. Overutilization of Proton Pump Inhibitors (PPIs) both in ambulatory care and in the inpatient setting possesses economic implications and increases the risk for adverse drug reactions. This study was undertaken to identify factors associated with inappropriate PPI use among consecutively unplanned admissions of elderly patients at the time of admission. Materials and Methods. In 758 patients (54.2% women), mean age 80.3±8.0 (M±1SD), demographic characteristics, and medical and medication history were recorded. Parametric tests and multiple logistic regression analysis were applied to identify the predictors of inappropriate PPI use. Results. 232 patients (30.6%) were receiving PPIs. 37 (4.9%) were receiving PPIs appropriately and 195 (25.7%) were receiving PPIs without a proper indication. Consequently, PPIs prescribing was inappropriate in 195/232 (84%). Moreover, 512 patients (67.5%) were not receiving PPIs appropriately and 14 patients (1.8%) were not receiving PPIs but they had a proper indication. When we compared patients receiving PPIs without a proper indication with those who were not receiving PPIs, a statistical difference was found according to Charlson Comorbidity Index (p≤0.001, U=37922.00), number of diseases (p≤0.001, U=33269.00) and medications (p≤0.001, U=31218.50), Katz Index score (p=0.01, U=45328.00), and the use of blood thinners (p≤0.001, χ2=21.15). In multivariate analysis the only independent predictor of inappropriate PPI use was the number of medications (p=0.001, OR=1.16, 95%CI 1.06-1.27). Conclusions. The main predictor of inappropriate PPI use was the number of received medications. Εfforts needed to apply the predefined criteria for PPI prescription and to deprescribe PPIs received inappropriately

    A Case Report of Successful Conservative Treatment for Infective Endocarditis Caused by Gemella sanguinis

    No full text
    Infective endocarditis is defined as an infection of a native or prosthetic heart valve, the endocardial surface of the heart, or an indwelling cardiac device. Among the miscellaneous emerging opportunistic bacteria that can cause infective endocarditis is Gemella sanguinis that has been reported as a cause of infective endocarditis in nine cases in the past. All of the survivors received antimicrobial therapy and underwent prosthetic valve replacement surgery while, in general, a proportion of 40–50% of the patients with infective endocarditis underwent valve surgery. Our case illustrates that valve surgery, in combination with the administration of antibiotics, is not the only therapeutic option for infective endocarditis due to Gemella sanguinis and that a conservative management with prolonged administration of parenteral antibiotics under close supervision of the patient can be an option

    Clinical implementation of preemptive pharmacogenomics in psychiatryResearch in context

    No full text
    Summary: Background: Pharmacogenomics (PGx) holds promise to revolutionize modern healthcare. Although there are several prospective clinical studies in oncology and cardiology, demonstrating a beneficial effect of PGx-guided treatment in reducing adverse drug reactions, there are very few such studies in psychiatry, none of which spans across all main psychiatric indications, namely schizophrenia, major depressive disorder and bipolar disorder. In this study we aim to investigate the clinical effectiveness of PGx-guided treatment (occurrence of adverse drug reactions, hospitalisations and re-admissions, polypharmacy) and perform a cost analysis of the intervention. Methods: We report our findings from a multicenter, large-scale, prospective study of pre-emptive genome-guided treatment named as PREemptive Pharmacogenomic testing for preventing Adverse drug REactions (PREPARE) in a large cohort of psychiatric patients (n = 1076) suffering from schizophrenia, major depressive disorder and bipolar disorder. Findings: We show that patients with an actionable phenotype belonging to the PGx-guided arm (n = 25) present with 34.1% less adverse drug reactions compared to patients belonging to the control arm (n = 36), 41.2% less hospitalisations (n = 110 in the PGx-guided arm versus n = 187 in the control arm) and 40.5% less re-admissions (n = 19 in the PGx-guided arm versus n = 32 in the control arm), less duration of initial hospitalisations (n = 3305 total days of hospitalisation in the PGx-guided arm from 110 patients, versus n = 6517 in the control arm from 187 patients) and duration of hospitalisation upon readmission (n = 579 total days of hospitalisation upon readmission in the PGx-guided arm, derived from 19 patients, versus n = 928 in the control arm, from 32 patients respectively). It was also shown that in the vast majority of the cases, there was less drug dose administrated per drug in the PGx-guided arm compared to the control arm and less polypharmacy (n = 124 patients prescribed with at least 4 psychiatric drugs in the PGx-guided arm versus n = 143 in the control arm) and smaller average number of co-administered psychiatric drugs (2.19 in the PGx-guided arm versus 2.48 in the control arm. Furthermore, less deaths were reported in the PGx-guided arm (n = 1) compared with the control arm (n = 9). Most importantly, we observed a 48.5% reduction of treatment costs in the PGx-guided arm with a reciprocal slight increase of the quality of life of patients suffering from major depressive disorder (0.935 versus 0.925 QALYs in the PGx-guided and control arm, respectively). Interpretation: While only a small proportion (∼25%) of the entire study sample had an actionable genotype, PGx-guided treatment can have a beneficial effect in psychiatric patients with a reciprocal reduction of treatment costs. Although some of these findings did not remain significant when all patients were considered, our data indicate that genome-guided psychiatric treatment may be successfully integrated in mainstream healthcare. Funding: European Union Horizon 2020

    A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

    No full text
    © 2023Background: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. Methods: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. Findings: Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p <0·0001). Interpretation: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe. Funding: European Union Horizon 2020
    corecore