35 research outputs found

    Nipah Virus Transmission in a Hamster Model

    Get PDF
    Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks

    Unexpectedly high burden of rotavirus gastroenteritis in very young infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The highest incidence of rotavirus gastroenteritis has generally been reported in children 6-24 months of age. Young infants are thought to be partially protected by maternal antibodies acquired transplacentally or via breast milk. The purpose of our study was to assess the age distribution of children with confirmed community-acquired rotavirus gastroenteritis presenting to an urban referral hospital.</p> <p>Methods</p> <p>Children presenting to The Children's Hospital of Philadelphia with acute gastroenteritis have been monitored for the presence of rotavirus antigen in the stool by ELISA (followed by genotyping if ELISA-positive) since the 1994-95 epidemic season.</p> <p>Results</p> <p>Over the last 12 rotavirus seasons prior to the introduction of the pentavalent rotavirus vaccine in 2006, stool specimens from 1646 patients tested positive for community-acquired rotavirus infection. Gender or age was not recorded in 6 and 5 cases, respectively. Overall, 58% of the cases occurred in boys. G1 was the predominant VP7 serotype, accounting for 72% of cases. The median (IQR) age was 11 (5-21) months. A total of 790 (48%) cases occurred in children outside the commonly quoted peak age range, with 27% in infants <6 months of age and 21% in children >24 months of age. A total of 220 (13%) cases occurred during the first 3 months of life, and the highest number of episodes per month of age [97 (6%)] was observed during the second month of life.</p> <p>Conclusions</p> <p>The incidence of community-acquired rotavirus gastroenteritis monitored over 12 seasons in the prevaccine era at a major university hospital was nearly constant for each month of age during the first year of life, revealing an unexpectedly high incidence of symptomatic rotavirus disease in infants <3 months old. A sizeable fraction of cases occurred in children too young to have been vaccinated according to current recommendations.</p

    A Novel CCR5 Mutation Common in Sooty Mangabeys Reveals SIVsmm Infection of CCR5-Null Natural Hosts and Efficient Alternative Coreceptor Use In Vivo

    Get PDF
    In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species
    corecore