
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The evolution of ebola virus

Citation for published version:
Holmes, EC, Dudas, G, Rambaut, A & Andersen, KG 2016, 'The evolution of ebola virus: Insights from the
2013-2016 epidemic', Nature, vol. 538, pp. 193–200. https://doi.org/10.1038/nature19790

Digital Object Identifier (DOI):
10.1038/nature19790

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/226983704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1038/nature19790
https://www.research.ed.ac.uk/portal/en/publications/the-evolution-of-ebola-virus(897c9a8d-75db-4745-a609-aa04c082bfcd).html


The Evolution of Ebola virus: Insights from the 2013-2016 Epidemic 
Edward C. Holmes1,*, Gytis Dudas2,3, Andrew Rambaut3,4,5, Kristian G. Andersen6,7,8,9,* 

1Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences 

and Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, 

Australia. 
2Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. 
3Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh 

EH9 3FL, UK. 
4Centre for Immunology, Infection and Evolution, University of Edinburgh, Ashworth 

Laboratories, Edinburgh EH9 3FL, UK. 
5Fogarty International Center, National Institutes of Health, MSC 2220 Bethesda, MD 20892, 

USA. 
6The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, 

CA 92037, USA. 
7The Scripps Research Institute, Department of Integrative Structural and Computational 

Biology, La Jolla, CA 92037, USA. 
8Scripps Translational Science Institute, La Jolla, CA 92037, USA. 
9The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. 
*To whom correspondence should be addressed: ECH: edward.holmes@sydney.edu.au or KGA: 

kristian@andersen-lab.com 

Preface 

The 2013-2016 epidemic of Ebola virus disease in West Africa was of unprecedented 

magnitude and changed our perspective on this lethal but sporadically emerging virus. 

This outbreak also marked the beginning of large-scale real-time molecular epidemiology. 

Herein, we show how evolutionary analyses of Ebola virus genome sequences provided key 

insights into virus origins, evolution, and spread during the epidemic. We provide basic 

scientists, epidemiologists, medical practitioners, and other outbreak responders with an 

enhanced understanding of the utility and limitations of pathogen genomic sequencing. 



This will be crucially important in our attempts to track and control future infectious 

disease outbreaks.  

Introduction 

The 2013-2016 Ebola virus disease (EVD) epidemic in West Africa appears to have begun 

following human contact with an animal (likely bat) reservoir of Ebola virus (EBOV) in 

December 2013, in the small village of Meliandou in Guéckédou Prefecture, Guinea1. After this 

initial spill-over infection, the outbreak remained undetected for several months and spread via 

chains of sustained human-to-human transmission, with no evidence of additional zoonotic 

transfers from the animal reservoir1–4. By the time that EBOV (a lineage later named the Makona 

variant5) was confirmed in March 2014, several villages, towns, and larger cities had reported 

cases1. When the World Health Organization declared the EVD outbreak to constitute a Public 

Health Emergency of International Concern in August 20146, EBOV had already spread across 

country borders with more than a thousand cases reported in Guinea, Sierra Leone, Liberia, and 

Nigeria. In the epidemic that followed, a total of 28,646 confirmed and suspected cases of EVD 

were documented, with 11,323 recorded deaths, making it by far the largest outbreak of EVD on 

record7. 

Ebola virus is a negative-sense single-strand RNA ((-)ssRNA) virus with a 19 kilobase genome, 

and like most other RNA viruses quickly generates mutations through error-prone replication. 

Until recently, genomic studies of infectious disease outbreaks were necessarily retrospective, 

occurring after the pathogen had either been eradicated or developed endemic transmission in the 

host population8–12. However, recent developments in high-throughput next generation 

sequencing (NGS)13–16 enabled rapid and in-depth viral genomic surveillance during the 2013-

2016 EVD epidemic1–3,17–26. Indeed, with the advent of NGS it is now possible to generate 

pathogen genomic data directly from diagnostic patient samples2,3,17–27 within days or hours of 

the sample being taken25,26, and in challenging field situations19,23,25,26. The resulting large-scale 

sequence data sets provide new opportunities for the epidemiological investigation of 

transmission chains and the improvement of outbreak responses28. In the case of the 2013-2016 

EVD epidemic, the sequence data generated have revealed key aspects of the patterns and 

processes of EBOV evolution as the epidemic proceeded2,3,20–22,24–26,29,30. Hence, not only was 



the 2013-2016 epidemic a landmark in the epidemiological history of EBOV, but the size of the 

resulting genomic data set - over 1,500 full-length EBOV Makona sequences (Table 1), or 

approximately 5% of those infected - also make it one of the most densely sampled infectious 

disease outbreaks (Fig. 1a, b). Although sequence data have been generated from outbreaks of 

viral disease for over 30 years8–12,31,32, the sheer size of the data set, the widespread spatial 

coverage (Fig. 1a), and the contemporary nature of the EBOV data provide the first in-depth 

genomic anatomy of an epidemic, setting a benchmark for future outbreak responses. In the 

following we illustrate how pathogen sequences produced during the 2013-2016 EVD epidemic 

provided key insights into EBOV genomic epidemiology and molecular evolution, and note the 

lessons that need to be learned for the effective study of future outbreaks. 

Review 

Ebola virus disease in humans 

Ebola virus (species Zaire ebolavirus) is one of four viruses - with Sudan virus, Taï Forest virus, 

and Bundibugyo virus - within the genus Ebolavirus that cause severe disease in humans and 

other primates. The final member of the genus is Reston virus, although infection with this virus 

does not appear to cause human disease33. All ebolaviruses are members of the family 

Filoviridae, which also includes Lloviu cuevavirus (genus Cuevavirus) and the severe human 

pathogen Marburg virus (genus Marburgvirus). It is believed that bats serve as the primary 

reservoir for EBOV34,35. However, EBOV infections have only been confirmed in a small 

number of mammalian species and it is unclear whether the virus infects a wider range of animal 

hosts that have yet to be sampled. Some evidence for a broader host distribution, at least in the 

evolutionary past, comes from the observation that endogenous filoviruses are present in the 

genomes of diverse mammalian species, including marsupials36,37. 

Ebola virus disease in humans was first described in Zaire (now, the Democratic Republic of the 

Congo (DRC)) in 1976, where, over a two-month period, it led to an outbreak of 318 cases with 

an 88% case-fatality rate (CFR)38 (although CFRs are difficult to estimate for EVD39,40, so 

should be interpreted with caution). Between 1977 and 2014, 12 smaller outbreaks were reported 

in Middle Africa, with 32 to 315 cases and CFRs ranging from 47% to 89%41. The 2013-2016 

EVD epidemic is therefore notable not only for its duration and magnitude, but also as the first 



outbreak in West Africa and the first where case exportations and nosocomial transmissions were 

reported outside of Africa41. However, despite the scale of the 2013-2016 EVD epidemic, 

infection with EBOV Makona appears to lead to similar disease characteristics and transmission 

profiles as previous EBOV outbreak variants42,43. For example, the CFR for the 2013-2016 EVD 

epidemic appears to be ~70%1,39,40,43 and estimates for the basic reproduction number (R0) fall 

between 1.5-2.5, both of which are comparable to calculations from previous outbreaks39,44–47. 

Origin of the 2013-2016 Ebola virus disease epidemic 

Evolutionary analyses of genome sequences from the 2013-2016 EVD epidemic have provided a 

clear picture of the origin and spread of EBOV Makona1–3,20–22,24–26,48. One of the most important 

early questions was whether the epidemic was the result of a single cross-species transmission 

event into humans, or whether there were repeated zoonotic events from a widespread animal 

EBOV reservoir. Due to the high genetic similarity of virus genomes sampled from the 

beginning of the epidemic, a single spill-over infection seems the most likely1,2. Phylogenetic 

analyses also make it clear that once the outbreak was established, later lineages of EBOV 

Makona have descended from those circulating earlier in the epidemic (Fig. 1c)2,3,20–22,24,25. This 

is in contrast to some of the earlier EVD outbreaks, in which epidemiological and sequence-

based investigations have provided evidence for multiple spill-over infections49,50. 

Sequence-based findings are consistent with epidemiological investigations into the timing of the 

2013-2016 EVD epidemic, which place the first case around late December 2013 in Guinea1. In 

particular, molecular clock dating analyses suggest that the common ancestor of all sequenced 

EBOV Makona lineages be placed at the beginning of 20142,21,48, with lineages in Guinea falling 

close to the root of the tree (Fig. 1c). These studies also showed that EBOV Makona diverged 

from other EBOV outbreak variants only about a decade ago2,48. This suggests that EBOV 

Makona may be fairly new to West Africa, sharing recent common ancestry with Middle African 

variants that are thousands of miles away. Molecular clock dating analyses have also shown that 

all recorded human EVD outbreaks caused by EBOV appear to share a common ancestor around 

19752,51. Strikingly, this is around the time of the first described EVD outbreak in 1976, 

suggesting that the EBOV lineage experienced a severe genetic bottleneck prior to the first 

human outbreak52,53. Despite their power54, molecular clock dating studies of this type would 



undoubtedly benefit from additional EBOV genomic sequence data from both previous EVD 

outbreaks and animal reservoir populations. 

Genetic diversification of Ebola virus Makona during the 2013-2016 epidemic 

Because of the relatively small magnitude and duration of previous EVD outbreaks, earlier 

EBOV sequencing efforts were necessarily limited to small numbers of temporally clustered 

cases. The data from these earlier studies largely comprised single viral lineages and led to the 

perception that EBOV genomes remain stable over the course of an outbreak55–59. However, the 

much larger size and duration of the 2013-2016 EVD epidemic (Fig. 1a, b) resulted in a different 

molecular epidemiological pattern for EBOV Makona, in which multiple virus lineages arose 

and co-circulated (Fig. 1c). 

Despite their shared border, the EBOV Makona genomes sampled from the three most affected 

countries - Guinea, Sierra Leone, and Liberia - generally (although not exclusively) form 

separate clusters on phylogenetic trees and exhibit different phylogenetic patterns (Fig. 1b, c)3,19–

22,24–26. Genomic studies have shown that the 2013-2016 EVD epidemic was dominated by three 

major lineages, denoted ‘A’21,25, ‘SL2’2, and ‘SL3’2,3 (Fig. 1c). Most of these lineages - 

including lineage A21,25 in Guinea, SL3 in Sierra Leone3, and Liberian isolates24 - circulated 

locally, with only sporadic cross-border transmissions (Fig. 1c). In contrast, lineage SL22 has 

been the most widespread in the region (Fig. 1c)3,21,22,24,25. This lineage likely arose in Sierra 

Leone2 where it gave rise to lineage SL3 and several sub-lineages3,22. It crossed more than twice 

into Liberia24, seeded several transmission chains in Guinea21, and spread throughout Sierra 

Leone2,3,22 (Fig. 1c). It is unclear whether any of these lineages carry mutations that could have 

affected their epidemic potential60, or - perhaps more likely - whether the increased geographical 

spread of SL2 and SL3 is a reflection of chance epidemiological founding events (see later 

section below)60,61. 

Evolutionary dynamics of Ebola virus during the 2013-2016 epidemic 

Although the origin and spread of the 2013-2016 EVD epidemic seem well resolved1–3,20–22,24,25, 

other aspects of EBOV evolution during this epidemic have proven more controversial. A major 

point of contention in both scientific publications2,3,20–22,24,62–64 and the popular press65,66, has 

been whether the virus ‘mutated’ unusually rapidly during this outbreak. Unfortunately, much of 



this discussion is based on misrepresentations of what type of rate was measured and how these 

rates can be translated into predictions of phenotypic evolution. 

The starting point for the debate over how quickly EBOV Makona evolves was the observation 

by Gire et al. that the mean evolutionary rate early in the epidemic was ~1.9 x 10-3 [95% 

Bayesian credible interval: 1.11, 2.91 x 10-3] nucleotide substitutions per site, per year 

(subs/site/year)2. This rate was approximately twice as high as that averaged from genomic 

sequences of EBOV variantsa sampled from multiple outbreaks, at ~0.9 x 10-3 [0.81, 1.18 x 10-3] 

subs/site/year2. However, later studies of EBOV Makona consistently produced lower rate 

estimates than that generated by Gire et al.3,21,22,25. Indeed, taking the publicly available sequence 

data as a whole, estimates of the EBOV evolutionary rate for the 2013-2016 outbreak converge 

on a mean value of ~1.2 x 10-3 [1.13, 1.27 x 10-3] (Fig. 2). The ensuing discussions of whether 

EBOV is evolving more or less rapidly than expected, and what this means for the ability of the 

virus to evolve changes in transmissibility and virulence, have become a common narrative67–70. 

The debate over the evolutionary dynamics of EBOV highlights a number of general issues in 

viral evolution. First, estimates of evolutionary rate are generally expected to be higher within 

than between outbreaks. This is because the relatively short time-scale over which sequences are 

sampled during outbreaks may be insufficient for mutations to be removed (or less likely be 

fixed) by either natural selection or genetic drift. Hence, pathogen genomic sequences sampled 

early within epidemics will contain an excess of mildly deleterious variants that would 

eventually be eliminated by purifying selection61. This will tend to inflate evolutionary rates and 

in part explains why evolutionary rates in RNA viruses are often ‘time-dependent’: high toward 

the present, low toward the past71,72. Indeed, it is notable that as the 2013-2016 EVD epidemic 

progressed analyses of evolutionary rate in  EBOV converged on a reliable estimate  (Fig. 2), 

which is expected due to the increasing size of the data set combined with a longer sampling 

period. When viewed in the context of viruses as a whole, it is also striking that all the 

evolutionary rate estimates for EBOV fall in a narrow range towards the center of a distribution 

that spans more than three orders of magnitude, from ~10-2 to ~10-5 subs/site/year (Fig. 2). 

                                                
aEBOV outbreak variants are viral lineages responsible for human outbreaks. Other EBOV variants include EBOV 

Yambuku (Mayinga) from 1976, EBOV Kikwit from 1995, and EBOV Lomela from 2014 (DRC). The between-

outbreak evolutionary rate therefore reflects estimates averaged across all EBOV variants. 



As well as time-dependence, it is possible that purifying selection may be relaxed in humans 

following cross-species transmission and/or EBOV may undergo more replications per unit time 

during human outbreaks than in its reservoir species2,73. Both of these scenarios would increase 

the within-outbreak rate. Potential evidence for fundamental differences in evolutionary 

dynamics associated with species jumping is provided by the EBOV Lomela variant that 

emerged in the DRC during 2014, causing a small EVD outbreak with 69 cases74. The branch 

length on the EBOV phylogenetic tree leading to the EBOV Lomela sequences from their 

common ancestor is far shorter than expected from their sampling time in 2014 (Fig. 3a), 

indicating a markedly lower evolutionary rate74,75. This could reflect an evolutionary history in a 

different reservoir host to those previously described for EBOV, in which replication rates and 

hence evolutionary rates are reduced, or where purifying selection acts with greater potency than 

in humans. Intriguingly, lower EBOV evolutionary rates were also observed in suspected cases 

of transmission from human EVD survivors during the 2013-2016 epidemic (Fig. 3b)76,77. 

Unexpectedly low evolutionary rates may therefore serve as an important signal of transmissions 

from EVD survivors during flare-ups26,76 (Fig. 3b). 

The debate over EBOV evolutionary rate estimates has also revealed confusion over the 

terminologies used to describe the rate at which genetic changes accumulate. The most straight-

forward measure of the rate of molecular evolution is the nucleotide ‘substitution rate’, which 

describes the frequency that mutations are fixed in populations through time and for EBOV is 

best approximated by the rate observed between outbreaks (Box 1)61. This rate reflects the long-

term evolutionary process of selective constraints on the genome, host species-specific 

adaptation and the cumulative results of genetic drift. The rate of change within outbreaks might 

be better thought of as the ‘evolutionary rate’ as the short time-scale of sampling necessarily 

means that not all mutations observed will be fixed. Both the substitution rate and evolutionary 

rate can be clearly distinguished from the ‘mutation rate’. This term relates to the rate at which 

mutations are generated during viral replication by intrinsic biochemical factors, particularly 

how frequently the viral polymerase makes errors78 (Box 1). This rate is generally challenging to 

measure79,80 and is unknown for most viruses, including EBOV. It is therefore unfortunate that 

the debate over EBOV evolution has focused on ‘mutation’ (and hence potential differences 

intrinsic to particular virus lineages) when this is not the parameter that has been measured.  



Finally, it is too simplistic to think that a two-fold variation in rate estimates for EBOV will 

result in radically different evolutionary behavior, especially when seen in the context of RNA 

viruses as a whole (Fig. 2). The likelihood of meaningful adaptive evolution not only depends on 

the rate at which the virus is able to generate mutations, but also on those environmental and host 

factors that shape the selection pressures acting on the virus. That filoviruses have infected a 

wide range of mammalian hosts36,37,81 suggests that they are readily able to adapt to new 

environments irrespective of potential differences in evolutionary rate. 

Phenotypic evolution of Ebola virus during the 2013-2016 epidemic 

While the patterns of EBOV molecular evolution during the 2013-2016 EVD epidemic have 

been well characterized, it is currently unknown whether any of the observed mutations have 

resulted in differences in viral phenotype - particularly with respect to such traits as antigenicity, 

transmissibility, and virulence - or could have an impact on vaccines, therapeutics and 

diagnostics. Although genomic sequence data play a central role in understanding outbreak 

dynamics and evolution, revealing key aspects of viral phenotype using sequence data alone is 

fraught with difficulties, and may even be counterproductive to outbreak response by steering 

focus away from more critical needs65. 

As the 2013-2016 West African epidemic of EVD was so much larger than previous outbreaks, it 

is possible that EBOV Makona possesses mutations that have enhanced its transmissibility in 

humans. Without direct experimental data, however, a simpler scenario is that the scale and 

severity of the 2013-2016 EVD epidemic reflects a different epidemiological context than 

previous outbreaks. Under this model, most - if not all - EBOV variants entering human 

populations following cross-species transmissions have the ability to cause major epidemics, but 

have been unable to do so because of a lack of susceptible host population and/or environment. 

In particular, previous EVD outbreaks occurred in largely isolated and rural areas41 (with the 

notable exception of the 1995 outbreak in Kikwit, which has a population of ~400,00041), where 

there were either an insufficient number of susceptibles to guarantee long-term transmission, or 

the outbreak was quickly controlled by efficient interventions. The 2013-2016 EVD epidemic, in 

contrast, was the first in West Africa and the first in which a large EVD epidemic resulted in 

sustained community transmission from rural settings to major urban centers, where it was easier 

to establish large-scale transmission networks. This included the establishment of ‘underground’ 



networks, amplified by reluctance in the affected communities, that greatly hindered intervention 

strategies focused on breaking chains of transmission. That the scale of the 2013-2016 EVD 

epidemic more reflects virus epidemiology rather than virus evolution is also supported by the 

failure to find evidence for heritable changes in the duration of virus shedding or virulence 

during the course of the 2013-2016 EVD epidemic39,40,42–47. 

However, it is also the case that EBOV evolution during the 2013-2016 EVD epidemic is 

characterized by an abundance of nucleotide and amino acid sequence that could fuel adaptation 

for more efficient human transmission; any mutations that increased R0 would have been favored 

by natural selection. Because of its key role in virus-host interactions, most attention has been 

directed toward the EBOV glycoprotein (GP), and it is notable that the highest level of genetic 

amino acid diversity generated during the 2013-2016 EVD epidemic occurred in the GP (in 

particular, its mucin-like domain)3,22. For example, we observed 104 amino acid changes in GP 

that are shared by at least two EBOV Makona lineages across the ~1,500 publicly available 

complete EBOV genomes that make up about 5% of the more than 28,000 reported EVD cases7. 

While it is not known whether any of these amino acid changes lead to functional differences, 

one plausibly important GP variant that originated early in the epidemic (in lineage SL2)24 is an 

Alanine to Valine change at residue 82 (A82V). This is the first substitution observed in the 

receptor binding domain of EBOV and could potentially alter the interaction between the EBOV 

GP and its host receptor NPC182,83. Clearly, determining whether lineages of EBOV Makona 

carrying A82V or other mutations that arose during the 2013-2016 EVD epidemic differ in 

epidemic potential should be a research priority.  

Irrespective of potential differences in transmissibility yet to be uncovered, it is more certain that 

EBOV Makona is no different than previous EBOV outbreak variants when it comes to bodily 

fluids being the primary route of transmission81. Early on in the 2013-2016 EVD epidemic there 

was high-profile speculation that EBOV could evolve respiratory (i.e., airborne) transmission 

due to genetic diversity in the viral population62,64,65. However, there is no evidence for airborne 

EBOV transmission during the 2013-2016 EVD epidemic - or any other EVD outbreaks - nor are 

there any examples of other viruses evolving a new mode of transmission on the time-scale of 

individual outbreaks. Although influenza virus shifts its mode of transmission from (primarily) 



fecal-oral in its wild bird reservoir to respiratory in humans84, this change occurs at the point of 

cross-species transmission and not during human outbreaks.  

While the occurrence of airborne transmission can be eliminated for EBOV, studies utilizing 

genomic sequence data have conclusively shown that sexual transmission plays a previously 

unappreciated role for EBOV dissemination and reignition77,85–88. However, the long-term 

epidemiological and evolutionary implications of this mode of transmission are unclear and 

warrant further in-depth studies. 

Public health implications of genomic epidemiology 

In addition to providing essential information on the pattern and dynamics of viral evolution 

during epidemics, viral genomic data may be of more direct public health importance. Indeed, 

the 2013-2016 EVD epidemic is arguably the first in which genomic data have been used 

directly in a real-time public health setting, helping to inform policies and infection 

control2,7,25,26. That some of these studies were undertaken under difficult field conditions19,23,25,26 

highlights the potential for portable genomic sequencing to transform outbreak responses7,25. 

The simplest use of genomic data during outbreaks has been to reveal the pathways of viral 

spread through communities; when combined with phylogeographic approaches22,89 the results 

can be used to direct intervention methods to transmission hot-spots and determine the impact of 

specific interventions such as border closures. For example, Tong and colleagues used viral 

genome sequencing to show how EBOV spread from the capital city of Freetown to multiple 

districts throughout Sierra Leone22, with Arias et al. later documenting how virus traffic from 

Freetown established new transmission clusters late in the epidemic26. Similarly, phylogenetic 

analyses revealed the co-circulation of multiple EBOV lineages within individual localities such 

as Conakry20, as well as cross-border virus traffic between Guinea and Sierra Leone25, 

highlighting important gaps in intervention. On a more localized epidemiological scale, genome 

sequence data provide a way to reveal who-infected-whom in EBOV transmission networks 

(although see below). Pathogen sequence data can therefore yield key information on the 

likelihood of, for example, sexual transmissions77,85–88, as well as the possible transmission of 

EBOV via breast milk26. A similarly precise reconstruction of transmission chains is essential in 

understanding the multiple reignition events that occurred during the EBOV epidemic and their 



relation to viral transmissions from EVD survivors (Fig. 3b)76. It is unclear whether the small 

subset of EVD survivors that harbor persistent infections pose a sustained infection risk or 

whether an episode of renewed viral replication is required for transmission to occur. 

Considering the pattern and degree of EBOV genetic change within such cases may provide 

critical insights. Phylogenetic approaches also provide a powerful way to accurately estimate 

various outbreak parameters, such as R0, including that for individual virus lineages that are slow 

and difficult to obtain using longitudinal case data90,91. Finally, the identification of virus ‘super 

spreaders’ within human populations can also be readily achieved based on pathogen sequence 

data92. 

Despite the quantity and quality of the viral genome sequence data generated during the 2013-

2016 EVD epidemic there are limitations to the scope and impact of genomic epidemiology. 

Clearly, the direct phenotypic effects of individual mutations on vaccines, and therapeutics, 

diagnostics need to be tested experimentally. However, should viral lineages that differ in such 

properties arise during outbreaks, evolutionary genomic analyses provide a powerful means to 

both determine their origins and rapidly track their spread through human populations. 

Lessons learned and future directions 

The 2013-2016 EVD epidemic has set the benchmark for the use of large-scale molecular 

epidemiology as an essential tool in outbreak response. Given the development of portable 

sequencing technologies, real-time viral genome sequencing is now viable in clinics and 

diagnostic laboratories, including in resource-limited settings25,93. This will offer critical 

information to inform epidemiological intervention, but will require a willingness to invest in 

scientific infrastructure, healthcare, and training of local staff in the affected countries94. The 

need for immediate analysis and the growth of open sharing of sequence data means the 

challenge in genomic studies may be moving from data acquisition to analysis and interpretation. 

However, it is also the case that in-country real-time sequencing was not established until 

relatively late in the West African epidemic19,23,25,26,93, when case numbers had already begun to 

decline. In addition, many of the genome sequences were obtained in the absence of strong 

clinical and epidemiological metadata, such as the precise geographical location from where the 

sample was obtained, whether the individual survived the infection, and the time to the onset of 



symptoms. While it may be difficult to obtain such data during a rapidly developing outbreak, 

this limits the usefulness of genomic sequencing data in addressing a number of central 

biological questions, such as the virological basis to any variation in disease presentation and the 

evolution of pathogen virulence. An important lesson for the study and management of future 

disease outbreaks is not only that portable sequencing platforms should be deployed as rapidly as 

possible, but that each sequence obtained should be linked to as much relevant metadata as is 

ethically and technically possible. 

Despite the insights provided by the analysis of EBOV genome data, it is also clear that major 

questions remain. For future outbreaks it will be important to resolve exact chains of 

transmission (i.e., who-infected-whom) as this provides vital information on the patterns and 

mechanisms of virus spread within single communities and hospitals, which will help target 

interventions. Sequence data from the 2013-2016 EVD epidemic indicated that these chains were 

difficult to infer using the population consensus sequences from individual hosts, although in 

several cases they were shown to be in agreement with epidemiological studies2,3,25. Hence, 

although EBOV evolves rapidly, mutations are not necessarily fixed at the scale of individual 

transmission events, which limits phylogenetic resolution. One solution is to examine the 

transmission patterns of intra-host single nucleotide variants (iSNVs)3. If multiple iSNVs are 

routinely transmitted between individuals (i.e., that EBOV is not subject to a severe population 

bottleneck at inter-host transmission) then tracking the inheritance patterns of these variants can 

provide information on how transmission patterns exist between individual hosts, as previously 

shown for influenza virus95,96. Importantly, it has been shown that significant intra-host variation 

can be observed for EBOV, with 2-5 iSNVs per infected patient typical when using a minor 

allele frequency cutoff of 5%2–4,26. As the cutoff is lowered, the numbers of observed iSNVs 

increase sharply2,3.  

Genomic studies undertaken in West Africa toward the end of the 2013-2016 EVD outbreak 

illustrated how iSNV data can help resolve EBOV transmission pathways. For example, Arias 

and colleagues showed how the analysis of iSNVs from EBOV patients in Sierra Leone can 

provide strong support for sexual transmission from EVD survivors26. Determining the number 

of iSNVs that transmit between hosts can also provide key information on the severity of the 



transmission bottleneck3, itself critical for understanding the ability of natural selection to shape 

patterns of genetic diversity.  

Finally, while large-scale EBOV sequence studies have now been undertaken in human 

populations, there is an evident and critical need to determine the ecology and evolution of 

EBOV in its animal reservoir(s). While most current data points to bats being the ultimate 

reservoir host34,35, long-term studies of EBOV in bats have yet to be performed and it is likely 

that other host species exist, which may have a major bearing on epidemiological dynamics. To 

truly understand the ecology and evolution of EBOV, as well as its mechanisms of pathogenicity, 

will require information on the virus in all its host-virus interactions, and not just those 

associated with EVD outbreaks in humans. 
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Tables 

Study Platform Method Sequencing location Case location # Seqs 

Baize S et al. N Engl J Med. 2014 Apr Sanger Amplified International Guinea 3 

Gire SK et al. Science. 2014 Sep Illumina Direct International Sierra Leone 79 

Hoenen T et al. Science. 2015 Apr Sanger Amplified International Mali 4 

Bell A et al. Euro Surveill. 2015 May Illumina Direct International UK 3 

Park DJ et al. Cell. 2015 Jun Illumina Direct International Sierra Leone 232 

Kugelman JR et al. Emerg Infect Dis. 2015 Jul Illumina Direct In-country / Liberia Liberia 25 

Simon-Loriere E et al. Nature. 2015 Aug Illumina Direct International Guinea 85 

Carroll MW et al. Nature. 2015 Aug Illumina Direct International Guinea/Liberia 179 

Tong YG et al. Nature. 2015 Aug BGISEQ-100 Amplified ? Sierra Leone 175 

Smits et al. Euro Surveil. 2015 Sep Ion Torrent Amplified In-country / Sierra Leone Sierra Leone 49 

Ladner JT et al. Cell Host Microbe. 2015 Dec Illumina Direct International Liberia 140 

Quick J et al. Nature. 2016 Feb MinION Amplified In-country / Guinea Guinea 137 

Hoenen T et al. Emerg Infect Dis. 2016 Feb MinION Amplified In-country / Liberia Liberia 8 

Arias et al Virus Evolution 2016 Jun Ion Torrent Amplified In-country / Sierra Leone Sierra Leone 554 

Table 1 | Overview over EBOV sequencing studies performed during the 2013-2016 

epidemic. 

Summary of the different sequencing efforts performed during the 2013-2016 EVD epidemic 

noting sequencing platform. We include the following parameters for each study: method (Direct 

= no PCR amplification/enrichment; Amplified = material amplified via amplicon-based PCR 

prior to viral sequencing), sequencing location, country of origin for the sequenced samples (case 

location), and number of EBOV genomes produced. 

 

  



Figures 

Figure 1 | Evolution of EBOV during the 2013-2106 outbreak showing the extent and 

location of virus sampling.  

(a) Sampling during the 2013-2016 EVD epidemic. Sequencing efforts closely match confirmed 

and suspected case numbers in each administrative division of Guinea (green), Liberia (red) and 

Sierra Leone (blue) (Spearman correlation coefficient = 0.91). (b) Map of the three countries 

most affected by EVD during the 2013-2016 EVD epidemic. Administrative divisions in Guinea, 

Liberia and Sierra Leone are shown in green, red and blue, respectively, and colored according to 

the cumulative numbers of confirmed and suspected cases throughout the epidemic. Hatched 

areas indicate divisions that never reported any cases. The boundary data for the maps is from 

GADM (http://www.gadm.org). (c) Temporal phylogeny of all publicly available EBOV 

genomes estimated using BEAST97. Three lineages identified in previous studies2,21,25 are 

marked with colored backgrounds. The sequence alignment was partitioned into 4 categories: 

codon positions 1, 2 and 3, and non-coding intergenic regions. Changes in each of the 4 



partitions were modelled according to the HKY+Γ4 nucleotide substitution model with relative 

rates between partitions. Tip dates were used to calibrate a relaxed molecular clock with rates 

drawn from a lognormal distribution54 with an uninformative prior placed on the mean of the 

distribution. A flexible ‘skygrid’ tree prior was used to allow for changes in effective population 

sizes over time. Each tip is colored according to the country where the patient was most likely 

infected: green for Guinea, red for Liberia and blue for Sierra Leone. All panels are current as of 

April 19th, 2016. 

Figure 2 | Evolutionary rates of EBOV compared to those of other RNA viruses. 

(a) Estimates of evolutionary rate in diverse RNA viruses. Green points at the top indicate the 

mean evolutionary rates estimated for EBOV during the 2013-2016 EVD epidemic from 

different studies, with dashed lines showing the 95% credible intervals derived from BEAST 

analyses. Points at the bottom represent equivalent estimates (without uncertainty intervals) 

published previously for negative-sense single-strand RNA viruses (red), positive-sense single-

strand RNA viruses (blue) and double-strand RNA viruses (purple)72. Points colored the same 

shade belong to the same family. Evolutionary rate estimates for EBOV Makona occupy a 

narrow distribution within the range of rates observed in RNA viruses as a whole. (b) 95% 

credible intervals for the distribution of evolutionary rates for EBOV from the 2013-2016 EVD 

epidemic published previously. *An erratum98 revised the mean evolutionary rate estimate for 

Ref.17 to 1.32 x 10-3 [95% credible intervals: 0.89, 1.75 x 10-3] subs/site/year. 



Figure 3 | Examples of violations of the Ebola virus molecular clock. 

(a) Root-to-tip regression of genetic distances against time (month and year) of sampling for 105 

representative EBOV variant sequences collected between 1976 and 2016 based on a maximum 

likelihood tree. (b) Equivalent root-to-tip regression of publicly available sequences from the 

2013-2016 EVD epidemic utilizing data on the day of sampling, and the maximum likelihood 

tree on which the estimates were made. RAxML99 (panel A) and PhyML100 (panel B) were used 



to find the maximum likelihood phylogenies under an HKY+Γ4
 substitution model which was 

rooted via least squares regression in TempEst. Substitutions accumulate linearly with time, with 

some variation. Sequences recovered from transmission events that occurred as a result of 

persistent EBOV infection often exhibit temporal anomalies. In this scenario, EBOV may 

accumulate substitutions at a lower rate during persistence in individuals compared to regular 

person-to-person transmission. Larger red points indicate sequences of EBOV sampled from 

EVD survivor-associated transmission chains76,77. 



Box 1 Figure | Different measures of genome sequence change. 

Mutations accumulate with time. This phenomenon is at the core of molecular clocks, a class of 

methods that aim to convert molecular phylogenies with branch lengths given in expected 

substitutions per site into plausible temporal phylogenies where branch lengths are given in time 

units and the trees themselves are embedded in time. By making use of sequences sampled at 

different times, such methods can estimate the evolutionary rate that provides the conversion 

from genetic distance into time. As phylogenetic methods have become ever more powerful and 



easily accessible, confusion has resulted from the frequent and interchangeable use of the terms 

mutation rate and substitution rate to signify the ‘molecular clock’ rate. Mutation and 

substitution rates, however, sit on the opposite ends of the evolutionary rate continuum and 

neither is the appropriate term for the molecular clock rate derived from densely sequenced 

epidemics. 

Concept Explanation “holmes

_figure

_box.pd

f” 

Mutation rate As viruses replicate, mutational errors are incorporated into the viral 

genome. The mutation rate is therefore typically expressed as the 

number of mutations per site, per replication event. The mutation rate 

for RNA viruses such as EBOV is largely determined by the viral 

RNA-dependent RNA polymerase, which lacks proof-reading activity. 

The estimation of mutation rates requires complex sequencing-based 

or phenotypic marker experiments that correct for the impact of 

natural selection79. Mutation rates are unknown for most viruses and 

have not been determined for EBOV, although it would be predicted 

to be comparable to other (-)ssRNA viruses and likely similar across 

all EBOV outbreak variants. 

Evolutionary rate The evolutionary rate of a virus can be defined as the observed rate at 

which new variants arise and spread in the viral population as the 

result of a complex interplay of natural selection, genetic drift, modes 

of transmission and epidemiological processes. This can be measured 

by methods that compare the genetic change in viral genomes 

collected at different times. Importantly, evolutionary rates in RNA 

viruses may be dependent on the time-scale over which they are 

measured: they are elevated in the short-term, such as within disease 

outbreaks, because mildly deleterious mutations may not have been 

eliminated by purifying selection71,72.  

Substitution rate The substitution rate is best described as the long-term rate at which 

genetic variants become fixed in a virus lineage over evolutionary 

time-scales, such as between human outbreaks in the case of EBOV. 



This rate will usually be lower than the short-term evolutionary rate, 

because many of the variants circulating within outbreaks and 

epidemics will ultimately be eliminated. Furthermore, saturation – 

repeated changes at the same site – will further reduce the measured 

substitution rate.  

Fixation rate An added complexity in estimating rates in RNA viruses is that the 

population genetic concept of ‘fixation’, central to the definition of 

substitution, is ill-defined. In slowly evolving organisms fixation 

events can usually be distinguished from polymorphisms by analysing 

individual nucleotide sites within and between species. However, in 

rapidly evolving RNA viruses fixation can be described to occur (1) at 

the level of individual hosts over the course of infection, (2) in viral 

lineages within specific geographic locations or epidemiological 

networks (such as the different lineages of EBOV generated during 

the 2013-2016 EVD epidemic), (3) in global meta-populations, and 

(4) between different viral species. 
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