4 research outputs found

    Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder

    Get PDF
    Prenatal factors influence autism spectrum disorder (ASD) incidence in children and can increase ASD symptoms in offspring of animal models. These may include maternal immune activation (MIA) due to viral or bacterial infection during the first trimesters. Unfortunately, regardless of ASD etiology, existing drugs are poorly effective against core symptoms. For nearly a century a ketogenic diet (KD) has been used to treat seizures, and recent insights into mechanisms of ASD and a growing recognition that immune/inflammatory conditions exacerbate ASD risk has increased interest in KD as a treatment for ASD. Here we studied the effects of KD on core ASD symptoms in offspring exposed to MIA. To produce MIA, pregnant C57Bl/6 mice were injected with the viral mimic polyinosinic-polycytidylic acid; after weaning offspring were fed KD or control diet for three weeks. Consistent with an ASD phenotype of a higher incidence in males, control diet-fed MIA male offspring were not social and exhibited high levels of repetitive self-directed behaviors; female offspring were unaffected. However, KD feeding partially or completely reversed all MIA-induced behavioral abnormalities in males; it had no effect on behavior in females. KD-induced metabolic changes of reduced blood glucose and elevated blood ketones were quantified in offspring of both sexes. Prior work from our laboratory and others demonstrate KDs improve relevant behaviors in several ASD models, and here we demonstrate clear benefits of KD in the MIA model of ASD. Together these studies suggest a broad utility for metabolic therapy in improving core ASD symptoms, and support further research to develop and apply ketogenic and/or metabolic strategies in patients with ASD

    Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice

    Get PDF
    ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders

    Mortality after surgery in Europe: a 7 day cohort study.

    No full text
    corecore