8 research outputs found

    Transfer RNA, activating enzymes and amber suppression

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Defective translation of tumor necrosis factor mRNA in lipopolysaccharide-tolerant macrophages.

    No full text
    Macrophage activation by lipopolysaccharide (LPS) results in the translational activation of tumor necrosis factor (TNF) mRNA. The initial phase of macrophage activation is followed by a refractory state called LPS tolerance characterized by an impaired TNF production in response to a secondary LPS challenge. LPS-tolerant macrophages contain high amounts of TNF mRNA, suggesting a translational regulation of TNF biosynthesis. The induction of LPS tolerance was studied in RAW 264.7 macrophages stably transfected with a chloramphenicol acetyl-transferase (CAT) reporter gene construct driven by a constitutive cytomegalovirus promoter and containing the 3' untranslated region of the murine TNF gene. We found that primary stimulation of transfected cells by LPS (1 ng/ml, 12 hr) resulted in a marked suppression (80%) of CAT accumulation in response to a secondary LPS challenge (1 microgram/ml, 6 hr). In contrast, the accumulation of CAT mRNA was not influenced by LPS tolerance. Using the same CAT reporter, we observed that the serine/threonine phosphatases 1 and 2A inhibitor okadaic acid induced TNF mRNA translation and that this activation was not inhibited by LPS-tolerance. In conclusion, these data indicate that deficient production of TNF in LPS-tolerant macrophages in response to a second LPS challenge is characterized by a defective translation of TNF mRNA. However, this hyporesponsiveness to LPS is specific, since translation of TNF mRNA induced by okadaic acid is not inhibited in LPS-tolerant macrophages.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Glutathione depletion increases tyrosinase activity in human melanoma cells.

    Get PDF
    The aim of the present work was to estimate the effect of intracellular glutathione depletion on melanogenesis in human melanoma cells. We determined tyrosine hydroxylation activity, the rate-limiting step of the pathway, and 14C-melanin formation, an assay reflecting the global eumelanogenic pathway. Intracellular glutathione was depleted by treatment with buthionine-S-sulfoximine, a well-known inhibitor of gamma-glutamylcysteine synthetase. The intracellular depletion of glutathione was substantial after 20 h of incubation with 50 microM buthionine-S-sulfoximine, although a significant effect could be observed after 6 h. Tyrosine hydroxylase activity increased in parallel with glutathione depletion, to reach 160% with respect to the control values during 24 h of buthionine-S-sulfoximine treatment. We have found the response to buthionine-S-sulfoximine to be dose dependent and the two different human cell lines HBL and LND1 to have similar, if not identical, responses. 14C-melanin formation assay revealed even greater activation, up to 400% of the control values. This indicates that glutathione depletion may have two distinct effects: first, a direct one on tyrosinase activity and, second, an effect on the promotion of eumelanogenesis. The stimulation of tyrosine hydroxylase can be explained by a possible inactivation of the enzyme by endogenous thiol compounds rather than by a direct effect of buthionine-S-sulfoximine itself on tyrosinase. The data suggest that thiol compounds may play a role for stimulation of melanogenesis by ultraviolet radiation.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Cell Engineering

    No full text
    info:eu-repo/semantics/publishe

    Cloning and chromosomal location of human genes inducible by type I interferon.

    No full text
    When cells are treated with interferon several new proteins are induced. We have isolated by differential screening two cDNA clones corresponding to human genes inducible by IFN-alpha, termed IFI-4 and IFI-54K. The accumulation of the corresponding mRNA was followed as a function of either IFN dose or of time. The IFI-4 and IFI-54K genes, as well as two previously isolated IFN-inducible genes, namely the IFI-56K and low-molecular-weight 2-5A synthetase, were localized on the human chromosomes. Using cloned probes on Southern blots of DNA from a panel of rodent-human somatic cell hybrids, we have assigned the IFI-4 gene to chromosome 1 and the gene coding for the low-molecular-weight 2-5A synthetase to chromosome 12. We also showed that the IFI-54K and IFI-56K genes, unlike most of the IFN-inducible genes, are syntenic. They are both located on chromosome 10. In addition, evidence is given for the presence of a pseudogene homologous to IFI-56K on chromosome 13.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    The IFI-56K and IFI-54K interferon-inducible human genes belong to the same gene family

    Get PDF
    The IFI-56K and IFI-54K human genes are coordinately regulated by interferon, double-stranded RNA and viruses in a number of cell lines. These genes encode polypeptides of 56 and 54 kDa, respectively, whose function remains to be determined. We analysed the possible structural relatedness between these syntenic and similarly regulated genes. We found that they are very closely related at the protein, mRNA and promoter levels. This suggests that the IFI-56K and IFI-54K genes are members of a gene family, which probably arose from duplication of an ancestor gene.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore