12 research outputs found

    Rational design of monolayers for improved water evaporation mitigation

    Full text link
    Seven chemically designed monolayer compounds were synthesized and investigated with comparison to the properties and water evaporation suppression ability of 1-hexadecanol and 1-octadecanol. Increasing the molecular weight and polarity of the compound headgroup drastically altered the characteristics and performance of the monolayer at the air/water interface. Contrary to the common expectation the monolayer\u27s lifetime on the water surface decreased with increasing number of ethylene oxy moieties, thus optimal performance for water evaporation suppression was achieved when only one ethylene oxy moiety was used. Replacing the hydroxyl headgroup with a methyl group and with multiple ethylene oxy moieties resulted in a loss of suppression capability, while an additional hydroxyl group provided a molecule with limited performance against water evaporation. Theoretical molecular simulation demonstrated that for exceptional performance, a candidate needs to possess a high equilibrium spreading pressure, the ability to sustain a highly ordered monolayer with a stable isotherm curve, and low tilt angle over the full studied range of surface pressures by simultaneously maintaining H-bonding to the water surface and between the monolayer chains

    Size-Dependent Fullerene–Fullerene Interactions in Water: A Molecular Dynamics Study

    No full text
    Nested fullerenes display a range of unique properties influenced by their size and shape. In this paper, the size- and shape-dependent aggregation of nested fullerenes in water is studied using explicit solvent molecular dynamic simulations. It is shown that water forms a layered structure near the surface of the particle, with the density of interfacial water increasing with increasing particle size. Meanwhile, water molecules near the extended facets of large nested fullerenes are unable to maintain their hydrogen bonding network, leading to a shape and size mediated structuring of surrounding waters. These distortions affect the overall association kinetics of particles in water with spherically shaped particles transitioning quickly into contact, while larger fullerenes, characterized by a lower sphericity, cluster at a much slower rate

    Molecular mechanism of stabilization of thin films for improved water evaporation protection

    Full text link
    All-atom molecular dynamics simulations and experimental characterization have been used to examine the structure and dynamics of novel evaporation-suppressing films where the addition of a water-soluble polymer to an ethylene glycol monooctadecyl ether monolayer leads to improved water evaporation resistance. Simulations and Langmuir trough experiments demonstrate the surface activity of poly(vinyl pyrrolidone) (PVP). Subsequent MD simulations performed on the thin films supported by the PVP sublayer show that, at low surface pressures, the polymer tends to concentrate at the film/water interface. The simulated atomic concentration profiles, hydrogen bonding patterns, and mobility analyses of the water-polymer-monolayer interfaces reveal that the presence of PVP increases the atomic density near the monolayer film, improves the film stability, and reduces the mobility of interfacial waters. These observations explain the molecular basis of the improved efficacy of these monolayer/polymer systems for evaporation protection of water and can be used to guide future development of organic thin films for other applications

    Dynamic performance of duolayers at the air/water interface. 2. Mechanistic insights from all-atom simulations

    Full text link
    The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable

    Dynamic performance of duolayers at the air/water interface. 1. Experimental analysis

    Full text link
    Understanding, and improving, the behavior of thin surface films under exposure to externally applied forces is important for applications such as mimicking biological membranes, water evaporation mitigation, and recovery of oil spills. This paper demonstrates that the incorporation of a water-soluble polymer into the surface film composition, i.e., formation of a three-duolayer system, shows improved performance under an applied dynamic stress, with an evaporation saving of 84% observed after 16 h, compared to 74% for the insoluble three-monolayer alone. Canal viscometry and spreading rate experiments, performed using the same conditions, demonstrated an increased surface viscosity and faster spreading rate for the three-duolayer system, likely contributing to the observed improvement in dynamic performance. Brewster angle microscopy and dye-tagged polymers were used to visualize the system and demonstrated that the duolayer and monolayer system both form a homogeneous film of uniform, single-molecule thickness, with the excess material compacting into small floating reservoirs on the surface. It was also observed that both components have to be applied to the water surface together in order to achieve improved performance under dynamic conditions. These findings have important implications for the use of surface films in various applications where resistance to external disturbance is required

    Molecular Mechanism of Stabilization of Thin Films for Improved Water Evaporation Protection

    No full text
    All-atom molecular dynamics simulations and experimental characterization have been used to examine the structure and dynamics of novel evaporation-suppressing films where the addition of a water-soluble polymer to an ethylene glycol monooctadecyl ether monolayer leads to improved water evaporation resistance. Simulations and Langmuir trough experiments demonstrate the surface activity of poly­(vinyl pyrrolidone) (PVP). Subsequent MD simulations performed on the thin films supported by the PVP sublayer show that, at low surface pressures, the polymer tends to concentrate at the film/water interface. The simulated atomic concentration profiles, hydrogen bonding patterns, and mobility analyses of the water-polymer-monolayer interfaces reveal that the presence of PVP increases the atomic density near the monolayer film, improves the film stability, and reduces the mobility of interfacial waters. These observations explain the molecular basis of the improved efficacy of these monolayer/polymer systems for evaporation protection of water and can be used to guide future development of organic thin films for other applications
    corecore