8 research outputs found

    Should photovoltaics stay at home? Comparative life cycle environmental assessment on roof-mounted and ground-mounted photovoltaics

    Get PDF
    Renewable energy technologies like photovoltaics may be considered an indispensable component of a low-carbon electricity mix, but social acceptance should not be taken for granted. For instance, in Greece there are still claims, especially in rural areas, regarding the land use and the competition against more traditional economic activities such as grazing. An argument in favor of confining to roof-mounted photovoltaic installations is the additional infrastructure requirements for ground-mounted larger-scale photovoltaics. These requirements reduce and could potentially negate their environmental benefits. The aim of this study is to investigate the life cycle environmental impacts of commercial ground-mounted photovoltaic farms and compare them against residential roof-mounted photovoltaic installations. Data were gathered for a 500 kW ground-mounted photovoltaic installation and for five roof-mounted installations of 10 kW capacity, each from the same area at the prefecture of Pella in Northern Greece. An LCA (Life Cycle Assessment) was performed and results show that panel production is the main contributor for both types and that ground-mounted photovoltaics—when no transmission/distribution infrastructure is considered—have lower impacts than the roof-mounted residential photovoltaic installations for all impact categories except terrestrial ecotoxicity. However, when located further than 10.22 km from grid connection, ground-mounted photovoltaics have higher impacts for almost all environmental impact categories

    A Discrete Process Modelling and Simulation Methodology for Industrial Systems within the Concept of Digital Twins

    No full text
    A generic well-defined methodology for the construction and operation of dynamic process models of discrete industrial systems following a number of well-defined steps is introduced. The sequence of steps for the application of the method as well as the necessary inputs, conditions, constraints and the results obtained are defined. The proposed methodology covers the classical offline modelling and simulation applications as well as their online counterpart, which use the physical system in the context of digital twins, with extensive data exchange and interaction with sensors, actuators and tools from other scientific fields as analytics and optimisation. The implemented process models can be used for what-if analysis, comparative evaluation of alternative scenarios and for the calculation of key performance indicators describing the behaviour of the physical systems under given conditions as well as for online monitoring, management and adjustment of the physical industrial system operations with respect to given rules and targets. An application of the proposed methodology in a discrete industrial system is presented, and interesting conclusions arise and are discussed. Finally, the open issues, limitations and future extensions of the research are considered

    A Discrete Process Modelling and Simulation Methodology for Industrial Systems within the Concept of Digital Twins

    No full text
    A generic well-defined methodology for the construction and operation of dynamic process models of discrete industrial systems following a number of well-defined steps is introduced. The sequence of steps for the application of the method as well as the necessary inputs, conditions, constraints and the results obtained are defined. The proposed methodology covers the classical offline modelling and simulation applications as well as their online counterpart, which use the physical system in the context of digital twins, with extensive data exchange and interaction with sensors, actuators and tools from other scientific fields as analytics and optimisation. The implemented process models can be used for what-if analysis, comparative evaluation of alternative scenarios and for the calculation of key performance indicators describing the behaviour of the physical systems under given conditions as well as for online monitoring, management and adjustment of the physical industrial system operations with respect to given rules and targets. An application of the proposed methodology in a discrete industrial system is presented, and interesting conclusions arise and are discussed. Finally, the open issues, limitations and future extensions of the research are considered

    Data for the project management, life cycle inventory, costings and energy production of a ground-mounted photovoltaic farm in Greece

    No full text
    Data was collected using standard communication equipment and invoices provided by an established civil construction and renewable energy development and operation company. Data referring to the construction, costings, operation and environmental impacts of a photovoltaic farm were recorded into four distinct Excel files namely: i) Project Management Data, ii) Life Cycle Inventory (LCI), iii) Electricity Generation Data and iv) Operational Cost Data.For the project management, the given quantities of the resources used in each activity could be further combined with the costs from different geographical and time regions to estimate overall project implementation costs for similar projects. The LCI data for the materials and transportation used can set the basis for life cycle assessment modelling of ground-mounted photovoltaic farms of that size and type. The electricity generation data along with meteorological parameters and location coordinates can be further enhanced to predict and manage energy generation and cashflow of expectations installations of this type and size over time. Finally, the data referring to a number of cost categories(‘maintenance costs’, ‘operational costs’, ‘insurance costs’ and ‘any other costs’), especially combined with the previously mentioned types of data could support a holistic technoeconomic and environmental assessment of comparable commercial photovoltaic installations.In addition, these data can be used for a comparative multi-disciplinary evaluation between photovoltaics and among various renewable electricity generation alternatives and traditional fossil fuel-based options as well

    HYDRA: Introducing a Low-Cost Framework for STEM Education Using Open Tools

    No full text
    STEM education is of paramount importance, especially in the lower levels of education, and it has been proven beneficial for students in many ways. Although there are various tools available, there are significant drawbacks mainly related to the cost and the ease of use. In this study, we introduce a new low-cost educational framework oriented toward elementary and secondary educational needs. The proposed system exploits open tools and low-cost devices. The system’s core is based on the popular Arduino microcontroller, a low-cost device supported by a large community. The overall system was designed and developed, providing an expandable, modular system of low complexity suitable for students with no or low prior knowledge in related subjects, among others, to programming, embedded devices, sensors and actuators, as well as robotics. Our scope was to provide a system with a small learning curve. Practically, this makes it possible in a short amount of time for the students to perform appealing yet straightforward tasks which will boost their self-confidence and creativity, improve their technical skills and simultaneously provide a system with several capabilities usable in different kinds of projects. The introduced system was tested through a preliminary study using flow theory in a team of 68 students of the three last grades in an elementary school in Greece

    HYDRA: Introducing a Low-Cost Framework for STEM Education Using Open Tools

    No full text
    STEM education is of paramount importance, especially in the lower levels of education, and it has been proven beneficial for students in many ways. Although there are various tools available, there are significant drawbacks mainly related to the cost and the ease of use. In this study, we introduce a new low-cost educational framework oriented toward elementary and secondary educational needs. The proposed system exploits open tools and low-cost devices. The system’s core is based on the popular Arduino microcontroller, a low-cost device supported by a large community. The overall system was designed and developed, providing an expandable, modular system of low complexity suitable for students with no or low prior knowledge in related subjects, among others, to programming, embedded devices, sensors and actuators, as well as robotics. Our scope was to provide a system with a small learning curve. Practically, this makes it possible in a short amount of time for the students to perform appealing yet straightforward tasks which will boost their self-confidence and creativity, improve their technical skills and simultaneously provide a system with several capabilities usable in different kinds of projects. The introduced system was tested through a preliminary study using flow theory in a team of 68 students of the three last grades in an elementary school in Greece
    corecore