25 research outputs found

    Prion-Like Domains in Phagobiota

    No full text
    Prions are molecules characterized by self-propagation, which can undergo a conformational switch leading to the creation of new prions. Prion proteins have originally been associated with the development of mammalian pathologies; however, recently they have been shown to contribute to the environmental adaptation in a variety of prokaryotic and eukaryotic organisms. Bacteriophages are widespread and represent the important regulators of microbiota homeostasis and have been shown to be diverse across various bacterial families. Here, we examined whether bacteriophages contain prion-like proteins and whether these prion-like protein domains are involved in the regulation of homeostasis. We used a computational algorithm, prion-like amino acid composition, to detect prion-like domains in 370,617 publicly available bacteriophage protein sequences, which resulted in the identification of 5040 putative prions. We analyzed a set of these prion-like proteins, and observed regularities in their distribution across different phage families, associated with their interactions with the bacterial host cells. We found that prion-like domains could be found across all phages of various groups of bacteria and archaea. The results obtained in this study indicate that bacteriophage prion-like proteins are predominantly involved in the interactions between bacteriophages and bacterial cell, such as those associated with the attachment and penetration of bacteriophage in the cell, and the release of the phage progeny. These data allow the identification of phage prion-like proteins as novel regulators of the interactions between bacteriophages and bacterial cells

    Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic Selection

    No full text
    Conventional antimicrobial susceptibility tests, including phenotypic and genotypic methods, are insufficiently accurate and frequently fail to identify effective antibiotics. These methods predominantly select therapies based on the antibiotic response of only the lead bacterial pathogen within pure bacterial culture. However, this neglects the fact that, in the majority of human infections, the lead bacterial pathogens are present as a part of multispecies communities that modulate the response of these lead pathogens to antibiotics and that multiple pathogens can contribute to the infection simultaneously. This discrepancy is a major cause of the failure of antimicrobial susceptibility tests to detect antibiotics that are effective in vivo. This review article provides a comprehensive overview of the factors that are missed by conventional antimicrobial susceptibility tests and it explains how accounting for these methods can aid the development of novel diagnostic approaches

    Introducing the sporobiota and sporobiome

    No full text
    Abstract Unrelated spore-forming bacteria share unique characteristics stemming from the presence of highly resistant endospores, leading to similar challenges in health and disease. These characteristics are related to the presence of these highly transmissible spores, which are commonly spread within the environment and are implicated in host-to-host transmission. In humans, spore-forming bacteria contribute to a variety of pathological processes that share similar characteristics, including persistence, chronicity, relapses and the maintenance of the resistome. We first outline the necessity of characterizing the totality of the spore-forming bacteria as the sporobiota based on their unique common characteristics. We further propose that the collection of all genes of spore-forming bacteria be known as the sporobiome. Such differentiation is critical for exploring the cross-talk between the sporobiota and other members of the gut microbiota, and will allow for a better understanding of the implications of the sporobiota and sporobiome in a variety of pathologies and the spread of antibiotic resistance

    Bacteriophages as New Human Viral Pathogens

    No full text
    The pathogenesis of numerous human multifaceted devastating diseases, including a variety of neurodegenerative and autoimmune diseases, is associated with alterations in the gut microbiota; however, the underlying mechanisms are not completely understood. Our recent human metagenome and phagobiota proteome analyses and studies in relevant animal models suggested that bacterial viruses might be implicated in the progression and maintenance of at least some pathologies, including those associated with protein misfolding. Here, for the first time, we propose the concept of bacteriophages as human pathogens. We suggest that bacterial viruses have different ways to directly and indirectly interact with eukaryotic cells and proteins, leading to human diseases. Furthermore, we suggest different causes of bacteriophages infection on the basis of the unique ways of interplay of phages, microbiota, and the human host. This concept opens a discussion of the role of bacteriophages as previously overlooked pathogenic factors and suggests that bacterial viruses have to be further explored as a diagnostic and treatment target for therapeutic intervention

    Bacterial Extracellular DNA Promotes β-Amyloid Aggregation

    No full text
    Alzheimer’s disease is associated with prion-like aggregation of the amyloid β (Aβ) peptide and the subsequent accumulation of misfolded neurotoxic aggregates in the brain. Therefore, it is critical to clearly identify the factors that trigger the cascade of Aβ misfolding and aggregation. Numerous studies have pointed out the association between microorganisms and their virulence factors and Alzheimer’s disease; however, their exact mechanisms of action remain unclear. Recently, we discovered a new pathogenic role of bacterial extracellular DNA, triggering the formation of misfolded Tau aggregates. In this study, we investigated the possible role of DNA extracted from different bacterial and eukaryotic cells in triggering Aβ aggregation in vitro. Interestingly, we found that the extracellular DNA of some, but not all, bacteria is an effective trigger of Aβ aggregation. Furthermore, the acceleration of Aβ nucleation and elongation can vary based on the concentration of the bacterial DNA and the bacterial strain from which this DNA had originated. Our findings suggest that bacterial extracellular DNA might play a previously overlooked role in the Aβ protein misfolding associated with Alzheimer’s disease pathogenesis. Moreover, it highlights a new mechanism of how distantly localized bacteria can remotely contribute to protein misfolding and diseases associated with this process. These findings might lead to the use of bacterial DNA as a novel therapeutic target for the prevention and treatment of Alzheimer’s disease

    Additional file 1 of Novel prokaryotic system employing previously unknown nucleic acids-based receptors

    No full text
    Additional file 1: Table S1. Effect of primary TezR–D1/R1 removal on bacterial siz

    Additional file 6 of Novel prokaryotic system employing previously unknown nucleic acids-based receptors

    No full text
    Additional file 6: Figure S1. Absence of RNase A internalization in B. pumilu

    A new biological definition of life

    No full text
    Here we have proposed a new biological definition of life based on the function and reproduction of existing genes and creation of new ones, which is applicable to both unicellular and multicellular organisms. First, we coined a new term “genetic information metabolism” comprising functioning, reproduction, and creation of genes and their distribution among living and non-living carriers of genetic information. Encompassing this concept, life is defined as organized matter that provides genetic information metabolism. Additionally, we have articulated the general biological function of life as Tetz biological law: “General biological function of life is to provide genetic information metabolism” and formulated novel definition of life: “Life is an organized matter that provides genetic information metabolism”. New definition of life and Tetz biological law allow to distinguish in a new way living and non-living objects on Earth and other planets based on providing genetic information metabolism
    corecore