4 research outputs found

    IDH1/IDH2 but Not TP53 Mutations Predict Prognosis in Bulgarian Glioblastoma Patients

    No full text
    Mutations in genes encoding isocitrate dehydrogenase isoforms 1 (IDH1) and 2 (IDH2) have been associated with good prognosis for patients with brain neoplasias and have been commonly found together with mutated TP53 gene. To determine the prevalence of IDH1, IDH2, and TP53 mutations and their impact on overall survival 106 glioblastoma patients were analysed. IDH1 mutations were detected in 13 and IDH2 mutation in one patient. Two homozygous samples with R132H mutation in IDH1 gene and a novel aberration K129R in IDH2 gene were found. Sixty-four percent of IDH1/IDH2 mutated tumours harboured also a mutation in TP53 gene. Genetic aberrations in TP53 were present in 37 patients. Statistical analysis of the impact of the studied factors on the overall survival showed that the mutations in IDH1/IDH2, but not the ones in TP53, were associated with longer survival. Also, the impact of age on prognosis was confirmed. This is the first comprehensive study on glioblastomas in Bulgaria. Our results suggest that IDH1/IDH2 but not TP53 mutations together with other prognostic factors such as age might be applied in clinical practice for prediction of outcome in patients with glioblastomas

    High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH

    Get PDF
    Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder whose hallmark is bilateral vestibular schwannoma. It displays a pronounced clinical heterogeneity with mild to severe forms. The NF2 tumor suppressor (merlin/schwannomin) has been cloned and extensively analyzed for mutations in patients with different clinical variants of the disease. Correlation between the type of the NF2 gene mutation and the patient phenotype has been suggested to exist. However, several independent studies have shown that a fraction of NF2 patients with various phenotypes have constitutional deletions that partly or entirely remove one copy of the NF2 gene. The purpose of this study was to examine a 7 Mb interval in the vicinity of the NF2 gene in a large series of NF2 patients in order to determine the frequency and extent of deletions. A total of 116 NF2 patients were analyzed using high-resolution array-comparative genomic hybridization (CGH) on an array covering at least 90% of this region of 22q around the NF2 locus. Deletions, which remove one copy of the entire gene or are predicted to truncate the schwannomin protein, were detected in 8 severe, 10 moderate and 6 mild patients. This result does not support the correlation between the type of mutation affecting the NF2 gene and the disease phenotype. This work also demonstrates the general usefulness of the array-CGH methodology for rapid and comprehensive detection of small (down to 40 kb) heterozygous and/or homozygous deletions occurring in constitutional or tumor-derived DN

    High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH

    Full text link
    Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder whose hallmark is bilateral vestibular schwannoma. It displays a pronounced clinical heterogeneity with mild to severe forms. The NF2 tumor suppressor (merlin/schwannomin) has been cloned and extensively analyzed for mutations in patients with different clinical variants of the disease. Correlation between the type of the NF2 gene mutation and the patient phenotype has been suggested to exist. However, several independent studies have shown that a fraction of NF2 patients with various phenotypes have constitutional deletions that partly or entirely remove one copy of the NF2 gene. The purpose of this study was to examine a 7 Mb interval in the vicinity of the NF2 gene in a large series of NF2 patients in order to determine the frequency and extent of deletions. A total of 116 NF2 patients were analyzed using high-resolution array-comparative genomic hybridization (CGH) on an array covering at least 90% of this region of 22q around the NF2 locus. Deletions, which remove one copy of the entire gene or are predicted to truncate the schwannomin protein, were detected in 8 severe, 10 moderate and 6 mild patients. This result does not support the correlation between the type of mutation affecting the NF2 gene and the disease phenotype. This work also demonstrates the general usefulness of the array-CGH methodology for rapid and comprehensive detection of small (down to 40 kb) heterozygous and/or homozygous deletions occurring in constitutional or tumor-derived DN
    corecore