32 research outputs found

    Holographic recording of fast events on a CCD camera

    Get PDF
    We report on holographic recording of nanosecond events on a conventional CCD camera. Three frames of an air-discharge event, with resolution of 5.9 ns and frame interval of 12 ns, are recorded in a single CCD frame. Each individual frame is reconstructed by digital filtering of the CCD frame, since successively recorded holograms are centered at different carrier frequencies in the spatial frequency domain

    Holographic techniques for recording ultrafast events

    Get PDF
    In this paper we report on a holographic method used to record fast events in the nanosecond time scale. Several frames of the expansion of shock waves in air and in a polymer sample are recorded holographically in a single shot experiment, using a pulse train generated with a single pulse from a Q-switched Nd:YAG laser. The time resolution is limited by the laser pulse width, which is 5.9 ns. The different frames are recorded on the holographic material using angle multiplexing. Two cavities are used to generate the signal and reference pulses at different angles. We also present a method in which the recording material is replaced by a CCD camera. In this method the holograms are recorded directly on the CCD and digitally reconstructed. The holograms are recorded on a single frame of the CCD camera and then digitally separated and reconstructed

    Optical memory for computing and information processing

    Get PDF
    The high data transfer rate achievable in page-oriented optical memories demands for parallel interfaces to logic circuits able to process efficiently the data. The Optically Programmable Gate Array, an enhanced version of a conventional FPGA, utilizes a holographic memory accessed by an array of VCSELs to program its logic. Combining spatial and shift multiplexing to store the configuration pages in the memory, the OPGA module is very compact and has extremely short configuration time allowing for dynamic reconfiguration. The reconfiguration capability of the OPGA can be applied to solve more efficiently problems in pattern recognition and digit classification

    Optically programmable gate array

    Get PDF
    The Optically Programmable Gate Array (OPGA), an optical version of a conventional FPGA, benefits from a direct parallel interface between an optical memory and a logic circuit. The OPGA utilizes a holographic memory accessed by an array of VCSELs to program its logic. An active pixel sensor array incorporated into the OPGA chip makes it possible to optically address the logic in a very short time allowing for rapid dynamic reconfiguration. Combining spatial and shift multiplexing to store the configuration pages in the memory, the OPGA module can be made compact. The reconfiguration capability of the OPGA can be applied to solve more efficiently problems in pattern recognition and database search

    Holographic techniques for recording ultrafast events

    Get PDF
    In this paper we report on a holographic method used to record fast events in the nanosecond time scale. Several frames of the expansion of shock waves in air and in a polymer sample are recorded holographically in a single shot experiment, using a pulse train generated with a single pulse from a Q-switched Nd:YAG laser. The time resolution is limited by the laser pulse width, which is 5.9 ns. The different frames are recorded on the holographic material using angle multiplexing. Two cavities are used to generate the signal and reference pulses at different angles. We also present a method in which the recording material is replaced by a CCD camera. In this method the holograms are recorded directly on the CCD and digitally reconstructed. The holograms are recorded on a single frame of the CCD camera and then digitally separated and reconstructed

    Socioeconomic Crisis and Incidence of Acute Myocardial Infarction in Messinia, Greece

    Get PDF
    In the last 5 years Greece is facing the worst socioeconomic crisis since the end of the Second World War. The purpose of the current study was to gather all the incident cases of acute myocardial infarction (AMI) that were hospitalized in the General Hospital of Kalamata during the last 10 years. Our results suggest that the prolonged financial crisis may have led to a higher incidence of AMI in the population of Messinia, Greece

    Optically programmable gate array

    Get PDF
    The Optically Programmable Gate Array (OPGA), an optical version of a conventional FPGA, benefits from a direct parallel interface between an optical memory and a logic circuit. The OPGA utilizes a holographic memory accessed by an array of VCSELs to program its logic. An active pixel sensor array incorporated into the OPGA chip makes it possible to optically address the logic in a very short time allowing for rapid dynamic reconfiguration. Combining spatial and shift multiplexing to store the configuration pages in the memory, the OPGA module can be made compact. The reconfiguration capability of the OPGA can be applied to solve more efficiently problems in pattern recognition and database search

    Dual x-ray absorptiometry, bioelectrical impedance, and near infrared interactance in obese women

    No full text
    Evaluation de la composition de la masse corporelle chez des femmes obéses à l'aide de trois méthodes : l'absorptiométrie, l'impédance bioélectrique et "near infrared interactance". Et comparaison des résultats selon la technique employée
    corecore