1 research outputs found
A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17
We report progress assembling the parts list for chromosome
17 and illustrate the various processes that we have developed to
integrate available data from diverse genomic and proteomic knowledge
bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas,
Human Protein Atlas (HPA), and GeneCards. All sites share the common
resource of Ensembl for the genome modeling information. We have defined
the chromosome 17 parts list with the following information: 1169
protein-coding genes, the numbers of proteins confidently identified
by various experimental approaches as documented in GPMDB, neXtProt,
PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq
and proteomic studies of epithelial derived tumor cell lines (disease
proteome) and a normal proteome (peripheral mononuclear cells), reported
evidence of post-translational modifications, and examples of alternative
splice variants (ASVs). We have constructed a list of the 59 “missing”
proteins as well as 201 proteins that have inconclusive mass spectrometric
(MS) identifications. In this report we have defined a process to
establish a baseline for the incorporation of new evidence on protein
identification and characterization as well as related information
from transcriptome analyses. This initial list of “missing”
proteins that will guide the selection of appropriate samples for
discovery studies as well as antibody reagents. Also we have illustrated
the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the chromosome. Since chromosome 17 is rich in cancer-associated genes, we have focused the clustering of cancer-associated genes in such genomic regions and have used the ERBB2 amplicon as an example of the value of a proteogenomic approach in which one integrates transcriptomic with proteomic information and captures evidence of coexpression through coordinated regulation