38 research outputs found
BMQ
BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals
Information resource preferences by general pediatricians in office settings: a qualitative study
BACKGROUND: Information needs and resource preferences of office-based general pediatricians have not been well characterized. METHODS: Data collected from a sample of twenty office-based urban/suburban general pediatricians consisted of: (a) a demographic survey about participants' practice and computer use, (b) semi-structured interviews on their use of different types of information resources and (c) semi-structured interviews on perceptions of information needs and resource preferences in response to clinical vignettes representing cases in Genetics and Infectious Diseases. Content analysis of interviews provided participants' perceived use of resources and their perceived questions and preferred resources in response to vignettes. RESULTS: Participants' average time in practice was 15.4 years (2–28 years). All had in-office online access. Participants identified specialist/generalist colleagues, general/specialty pediatric texts, drug formularies, federal government/professional organization Websites and medical portals (when available) as preferred information sources. They did not identify decision-making texts, evidence-based reviews, journal abstracts, medical librarians or consumer health information for routine office use. In response to clinical vignettes in Genetics and Infectious Diseases, participants identified Question Types about patient-specific (diagnosis, history and findings) and general medical (diagnostic, therapeutic and referral guidelines) information. They identified specialists and specialty textbooks, history and physical examination, colleagues and general pediatric textbooks, and federal and professional organizational Websites as information sources. Participants with access to portals identified them as information resources in lieu of texts. For Genetics vignettes, participants identified questions about prenatal history, disease etiology and treatment guidelines. For Genetics vignettes, they identified patient history, specialists, general pediatric texts, Web search engines and colleagues as information sources. For Infectious Diseases (ID) vignettes, participants identified questions about patients' clinical status at presentation and questions about disease classification, diagnosis/therapy/referral guidelines and sources of patient education. For ID vignettes, they identified history, laboratory results, colleagues, specialists and personal experience as information sources. CONCLUSION: Content analysis of office-based general pediatricians' responses to clinical vignettes provided a qualitative description of their perceptions of information needs and preferences for information resource for cases in Genetics and Infectious Diseases. This approach may provide complementary information for discovering practitioner's information needs and resource preferences in different contexts
Altered translation of GATA1 in Diamond-Blackfan anemia
Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)[superscript 1, 2], congenital asplenia[superscript 3] and T cell leukemia[superscript 4]. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown[superscript 5]. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.National Institutes of Health (U.S.) (Grant P01 HL32262)National Institutes of Health (U.S.) (Grant U54 HG003067-09
Civic biology and the origin of the school antievolution movement
In discussing the origins of the antievolution movement in American high schools within the framework of science and religion, much is overlooked about the influence of educational trends in shaping this phenomenon. This was especially true in the years before the 1925 Scopes trial, the beginnings of the school antievolution movement. There was no sudden realization in the 1920’s – sixty years after the Origin of Species was published – that Darwinism conflicted with the Bible, but until evolution was being taught in the high schools, there was no impetus to outlaw it. The creation of “civic biology” curricula in the late 1910’s and early 20’s, spearheaded by a close-knit community of textbook authors, brought evolution into the high school classroom as part of a complete reshaping of “biology” as a school subject. It also incorporated progressive ideologies about the purposes of compulsory public education in shaping society, and civic biology was fundamentally focused on the applications of the life sciences to human life. Antievolution legislation was part of a broader response to the ideologies of the new biology field, and was a reaction not only to the content of the new subject, but to the increasingly centralized control and regulation of education. Viewing the early school antievolution movement through the science-religion conflict is an artifact of the Scopes trial’s re-creation of its origins. What largely caused support for␣the school antievolution movement in the South and particularly Tennessee were concerns over public education, which biology came to epitomize