152 research outputs found

    A Numerical Study of the Variability and the Separation of the Gulf Stream, Induced by Surface Atmospheric Forcing and Lateral Boundary Flows

    Get PDF
    A primitive equation model is used to study the effects of surface and lateral forcing on the variability and the climatology of the Gulf Stream system. The model is an eddy-resolving, coastal ocean model that includes thermohaline dynamics and a second-order turbulence closure scheme to provide vertical mixing. The surface forcing consists of wind stress and heat fluxes obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS). Sensitivity studies are performed by driving the model with different forcing (e.g., annual versus zero surface forcing or monthly versus annual forcing). The model climatology, obtained from a five-year simulation of each case, is then compared to observed climatologies obtained from satellite-derived SST and hydrocast data. The experiments in which surface heat flux and wind stress were neglected show less realistic Gulf Stream separation and variability, compared with experiments in which annual or seasonal forcing are used. A similar unrealistic Gulf Stream separation is also obtained when the slope-water inflow at the northeast boundary is neglected. The experiments suggest that maintaining the density structure and the concomitant geostrophic flow in the northern recirculation gyre plays an important role in the separation of the Gulf Stream. The maintenance of the recirculation gyre is affected by heat transfer, wind stress, and slope-water inflow. The heat transfer involves several processes; lateral eddy transfer, surface heat flux, and vertical mixing. Further improvement of the Gulf Stream separation and climatology are obtained when seasonal changes in the lateral temperature and salinity boundary conditions are included. The seasonal climatology of the model calculations compare reasonably well with the observed climatology. Although total transports on open boundaries are maintained at climatological values, there are, nevertheless, large seasonal and spatial variations of Gulf Stream transport between Cape Hatteras and 62 degreesW. These changes are accompanied by transport changes in the northern recirculation gyr

    Data Assimilation Experiments in the Gulf Stream Region: How Useful Are Satellite-Derived Surface Data for Nowcasting the Subsurface Fields?

    Get PDF
    Satellite-derived surface data have become an important source of information for studies of the Gulf Stream system. The question of just how useful these datasets are for nowcasting the subsurface thermal fields, however, remains to be fully explored. Three types of surface data-sea surface temperature (SST), sea surface height (SSH), and Gulf Stream position (GSP)-are used here in a series of data assimilation experiments to test their usefulness when assimilated into a realistic primitive equation model. The U.S. Navy\u27s analysis fields from the Optimal Thermal Interpolation System are used to simulate the surface data and to evaluate nowcast errors. Correlation factors between variations of the surface data and variations of the subsurface temperature are used to project the surface information into the deep ocean, using data and model error estimates and an optimal interpolation approach to blend model and observed fields. While assimilation of each surface data source shows some skill in nowcasting the subsurface fields (i.e., reducing errors compared to a control case without assimilation), SSH data reduce errors more effectively in middepths (around 500 m), and SST data reduce errors more effectively in the upper layers (above 100 m). Assimilation of GSP is effective in nowcasting the deep Gulf Stream, while the model dynamics produce eddies that are not included in the GSP analysis. An attempt to optimally combine SST and SSH data in the assimilation shows an improved skill at all depths compared to assimilation of each set of data separately

    Continuous Assimilation of Geosat Altimeter Data into a Three-Dimensional Primitive Equation Gulf Stream Model

    Get PDF
    A three-dimensional data assimilation scheme is described and tested, using the Geosat altimeter data and a high-resolution, primitive equation, numerical ocean model of the Gulf Stream region. The assimilation scheme is based on an optimal interpolation approach in which data along satellite tracks are continuously interpolated horizontally and vertically into the model grid and assimilated with the model prognostic fields. Preprocessed correlations between surface elevation anomalies and subsurface temperature and salinity anomalies are used to project surface information into the deep ocean; model and data error estimates are used to optimize the assimilation. Analysis fields derived from the Navy\u27s Optimum Thermal Interpolation System are used to initialize the model and to provide some estimate of errors. To evaluate the effectiveness of the assimilation scheme, the errors of model oceanic fields (surface elevation, Gulf Stream axis, temperature) with data assimilation are compared with errors without data assimilation (i.e., a pure forecast). Although some mesoscale meanders and rings are not well produced by the assimilation model, consistent reduction of errors by the assimilation is demonstrated. The vertical distribution of errors reveals that the scheme is most effective in nowcasting temperatures at middepth (around 500 m) and less effective near the surface and in the deep ocean. The scheme is also more effective in nowcasting the Gulf Stream axis location than in nowcasting temperature variations. A comparison of the assimilation scheme during two periods shows that the nowcast skill of the assimilated model is reduced in May–September 1988, compared to May–July 1987, due to poor coverage of the altimeter data during 1988. This paper is one step toward a dynamic model and data assimilation system, which when fully developed, should provide useful nowcast and forecast information

    Simulations of the Atlantic Ocean with a Free Surface Sigma Coordinate Ocean Model

    Get PDF
    A sigma coordinate, free surface numerical model with turbulence dynamics has been implemented for the Atlantic Ocean and the Greenland Sea, from 80°S to 80°N. It is driven at the surface by monthly mean sea surface temperature and wind stress climatologies and is executed for 30 years. This is the first time that a model of this type, previously used mostly for coastal and regional simulations, has been implemented for the entire Atlantic Ocean and run for a long period of time. The model horizontal circulation, thermohaline overturning circulation, and meridional heat fluxes are described; the results are compared with observations and the results of other models. The model produces intense deep western boundary currents and complicated gyre structures associated with small-scale topographic variations. The meridional. overturning circulation consists of about 14 Sv (1 Sv = 106 m3 s-1) of southward flowing deep water mass crossing the equator and a northward heat flux with a maximum value of more than 1 PW (1015 W). Although the maximum meridional heat flux is comparable to estimates obtained from observations, the amplitude of the seasonal variations of northward heat flux across 26°N is underestimated in comparison with observations; it is similar to that obtained by other models

    Sigma Coordinate Pressure Gradient Errors and the Seamount Problem

    Get PDF
    In a recent paper by Mellor et al., it was found that, in two-dimensional (x, z) applications with finite horizontal viscosity and zero diffusivity, the velocity error, associated with the evaluation of horizontal density or pressure gradients on a sigma coordinate grid, prognostically disappeared, leaving behind a small and physically insignificant distortion in the density field. The initial error is numerically consistent in that it decreases as the square of the grid increment size. In this paper, we label this error as a sigma error of the first kind. In three-dimensional applications, the authors have encountered an error that did not disappear and that has not been understood by us or, apparently, others. This is a vorticity error that is labeled a sigma error of the second kind and is a subject of this paper. Although it does not prognostically disappear, it seems to be tolerably small. To evaluate these numerical errors, the authors have adopted the seamount problem initiated by Beckman and Haidvogel. It represents a stringent test case, as evidenced by their paper, wherein the model is initialized with horizontal isopycnals, zero velocity, and no forcing; then, any velocities that develop must be considered errors. Two appendices are important adjuncts to the paper, the first providing theoretical confirmation and understanding of the numerical results, and the second delving into additional errors related to horizontal or isosigma diffusion. It is, however, shown that satisfactory numerical solutions are obtained with zero diffusivity

    The Pressure Gradient Conundrum of Sigma Coordinate Ocean Models

    Get PDF
    It is shown that the differencing scheme cited here, though conventional, is not hydrostatically inconsistent; the sigma coordinate, pressure gradient error decreases with the square of the vertical and horizontal grid size. Furthermore, it is shown that the pressure gradient error is advectively eliminated after a long time integration. At the other extreme, it is shown that diagnostic calculations of the North Atlantic Ocean using rather coarse resolution, and where the temperature and salinity and the pressure gradient error are held constant, do not exhibit significant differences when compared to a calculation where horizontal pressure gradients are computed on z-level coordinates. Finally, a way of canceling the error ab initio is suggested

    On the Interpentadal Variability of the North Atlantic Ocean: Model Simulated Changes in Transport, Meridional Heat Flux and Coastal Sea Level Between 1955-1959 and 1970-1974

    Get PDF
    Previous studies by Greatbatch et al. (1991) indicate significant changes in the North Atlantic thermohaline structure and circulation between the pentads 1955–1959 and 1970–1974, using data analyzed by Levitus (1989a,b,c) and a simple diagnostic model by Mellor et al. (1982). In this paper these changes are modeled using a three-dimensional, free surface, coastal ocean model. Diagnostic and short-term prognostic calculations are used to infer the dynamically adjusted fields corresponding to the observed hydrographic and wind stress climatology of each pentad. While the results agree with earlier studies indicating that the Gulf Stream was considerably weaker (by about 30 Sv) during the 1970s compared to the 1950s, they also indicate some changes in the poleward heat transport, although the statistical significance of these changes relative to sampling errors in the data is not clear. The change of wind pattern between the two pentads, associated with changes in sea surface temperature, resulted in changes in the Ekman contribution to the poleward heat flux transport. The modeled sea level along the North American coast shows a sea level rise of about 5–10 cm between 1955–1959 and 1970–1974; a comparison with observed sea level at 15 tide gage stations shows good agreement. Most of the coastal sea level change is attributed to changes in thermohaline ocean circulation and wind stress; thermal expansion seems to play a lesser role. The methodology tested here demonstrates an effective way to estimate climate changes in ocean circulation and sea level from observed hydrographic data and winds using ocean models to enhance and analyze the data

    A Comparison of Gulf Stream Sea Surface Height Fields Derived from Geosat Altimeter Data and Those Derived from Sea Surface Temperature Data

    Get PDF
    Two types of satellite data, Geosat altimeter data and sea surface temperature data (SST), are compared and evaluated for their usefulness in assimilation into a numerical model of the Gulf Stream region. Synoptic sea surface height (SSH) fields are derived from the SST data in the following way: first three-dimensional temperature and salinity analysis fields are obtained through the Optimum Thermal Interpolation System (OTIS), and then SSH fields are calculated using a primitive equation, free-surface, numerical model running in a diagnostic mode. The aforementioned SSH fields are compared with SSH fields obtained from the Geosat altimeter data. Use of Geosat data requires an estimate of the cream SSH field relative to the earth geoid. Three different methods to obtain the mean SSH field are demonstrated. The first method uses altimetry and SST data, the second uses a diagnostic calculation with climatological data; and the third uses prognostic numerical calculations. The three estimates compared favorably with each other and with estimates obtained elsewhere. The comparison of the synoptic SSH fields derived from both data types reveals similarity in the Gulf Stream meanders and some mesoscale features, but shows differences in strength of eddies and in variability far from the Gulf Stream. Due to the smoothed nature of the OTIS analysis fields, the SSH derived from altimetry data has larger variability amplitudes compared to that derived from SST data. The statistical interpolation method, which is used to interpolate altimetry data from satellite tracks onto the model grid, is also evaluated for its filtering effect and its sensitivity to different parameters. The SSH variability of the Gulf Stream was calculated from two years of the exact repeat mission of the Geosat satellite, where altimeter data were interpolated daily onto the model grid. It is suggested here that some of the underestimation of mesoscale variations by statistical interpolation methods, as indicated by previous studies, may be explained by the filtering effect of the scheme

    The Influence of the Pressure Head on the Indonesian Seas Circulation

    Get PDF
    A high resolution, regional, non-linear, barotropic ocean model (2D POM) was used to show that a pressure difference between the Pacific and Indian Ocean does not significantly influence the total transport of the Indonesian throughflow

    Priobalna interakcija atmosfere i mora u uslovima izranjanja

    Get PDF
    In order to examine a possible sea-air interaction in the vicinity of the western edges of continents, successive integrations of a 2 – D atmosphere and ocean models were performed. The ocean model had prescribed wind forcing that was obtained from the atmospheric model which in turn had prescribed sea surface temperature resembling one for well developed upwelling. Both models are for a hydrostatic and Boussinesq fluid with a sigma coordinate system. They have high resolution in the horizontal and a very high resolution in the vertical, capable of resolving both top and bottom boundary layers. Turbulent fluxes and mixing coefficients are parameterized with the so-called 2.5 level, second order closure scheme proposed by Mellor and Yamada. Seaward boundary conditions for the ocean model and lateral boundary conditions for the atmosphere model were of the radiation type. The ocean model had prescribed sea surface elevation and y-component of the pressure (buoyancy) field from the available data. The diurnal cycle for the atmosphere model was implemented through the specification of the land surface temperature while night time cooling was modelled with a Newtonian forcing. The reference thermodynamic state of the atmosphere model was very similar to the observed state of the atmosphere in the Coastal Ocean Dynamics Experiment while environmental winds were specified to give values for the wind-stress close to the observed climatological values. The significant modification of the wind-stress profile relative to the wind-stress profile for the homogeneous sea surface temperature was obtained when the sea surface temperature was similar to the one for the well-developed upwelling. In the case of the constant sea surface temperature wind-stress profile was fairly constant in the offshore-onshore direction except in the vicinity of the coast line. With sea surface temperature profile resembling well-developed upwelling the atmosphere model developed wind-stress profile that had pronounced decrease in 40 km band next to the coast and a weak increase right at the coast. The ocean model forced with the wind stress obtained from the atmosphere run that had homogeneous sea surface temperature, developed strong upwelling zone and quite strong equatorward current with embedded jet near the coast. Forced with the wind stress from the run with nonhomoheneous sea surface temperature, the ocean run had a much weaker upwelling and a double structure of the longshore current with the poleward flow in the vicinity of the coast line an equatorward flow in the region, away from the coast, where wind stress was bigger than the prescribed, vertically integrad y-component of the pressure gradient force
    • …
    corecore