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The Pressure Gradient Conundrum of Sigma Coordinate Ocean Models

G. L. MELLOR, T. EZER, AND L.-Y. CEY

Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

(Manuscript received 8 March 1993, in final form 8 November 1993)

ABSTRACT

Much has been written of the error in computing the horizontal pressure gradient associated with sigma
coordinates in ocean or atmospheric numerical models. There also exists the concept of “hydrostatic inconsistency™
whereby, for a given horizontal resolution, increasing the vertical resolution may not be numerically convergent.

In this paper, it is shown that the differencing scheme cited here, though conventional, is not hydrostatically
inconsistent; the sigma coordinate, pressure gradient error decreases with the square of the vertical and horizontal
grid size. Furthermore, it is shown that the pressure gradient error is adveciively eliminated after a long time
integration. At the other extreme, it is shown that diagnostic calculations of the North Adantic Ocean using
rather coarse resolution, and where the temperature and salinity and the pressure gradient error are held constant,
do not exhibit significant differences when compared to a calculation where horizontal pressure gradients are
computed on z-level coordinates. Finally, a way of canceling the error ab initio is suggested.

1. Introduction

The use of sigma coordinates, wherein the water col-
umn is divided into the same number of grid cells in-
dependent of depth, is attractive when dealing with
bottom topography. It has been seen that estuaries are
modeled rather well (Oey et al. 1985a,b; Galperin and
Mellor 1990a,b); one needs to model the bottom
boundary layer to correctly represent tidal mixing. Ev-
idence is accumulating that sigma coordinates can ac-
commodate rather sharp topographical changes that
include a continental shelf with an adjacent shelf break
and deep ocean (Haidvogel et al. 1991; Ezer and Mellor
1992) and seamounts (Ezer 1994).

However, recent papers by Haney (1991) and others
have evoked concern in the ocean modeling commu-
nity that the use of sigma coordinates may cause sig-
nificant errors when dealing with steep topography. We
mostly defer to Haney’s introduction, which nicely
provides historical background emanating from the
meteorological literature but we will briefly repeat some
salient points. He notes, for example, that Rousseau
and Pham (1971), Janjic (1977), and Mesinger (1982)
have identified the related problem of “hydrostatic
consistency” corresponding to

o o H
H bo

<1, (1)
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where ¢ is the vertical sigma coordinate, defined below;
H is the depth; 6, H is the horizontal change in depth
of adjacent grid cells; and d¢ is the vertical cell size
associated with a sigma grid cell, dxdo. If (1) is not
satisfied, the finite-difference scheme is purportedly
nonconvergent. Haney concludes that “It is obviously
essential to choose the horizontal and vertical resolu-
tion carefully, not only to accommodate the particular
ocean problem at hand, but also to satisfy the hydro-
static consistency condition” {see Eq. (1)]. However,
adherence to (1) would be severely restrictive. For ex-
ample, with 20 evenly spaced sigma levels, (1) leads
to the constraint, §,H/H < 0.05. With present com-
puting resources, one would have to smooth bottom
topography in, say, a basin-scale model to the extent
that it may no longer resemble the basin. Equation (1)
would also mitigate against the use of a refined o grid
near the bottom to better resolve the boitom boundary
layer (where ¢ = —1; a similar problem does not exist
in the surface layer where ¢ = 0).

2. The pressure gradient error

We restrict attention to two dimensions until section
4. Let (x*, z) denote Cartesian coordinates and (x, o)
sigma coordinates. Although the relationship between
(x*, z) and (x, o) may be generalized (Gerdes 1993),
we cite here the specific and conventional relationship

x* =x, (2a)
z = gH(x), (2b)

where z and o increase vertically upward such that z
= ¢ = 0 at the surface and ¢ = —1 and z = —H at the
bottom.
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The kinematic pressure (pressure divided by a ref-
erence density) will be denoted by p. The horizontal
gradient of pressure, p* = p*(x*, z) in Cartesian co-
ordinates, when evaluated from the pressure, p = p(x,
o), in sigma coordinates is

p*  dp, 09b*
o ax ) g4 G
where b*' = b*(x*, ¢’) and
db* 9b o 0H 0b
—_— = = . 3b
ox* odx H dx do (3b)

The buoyancy is b = pg/pe where p is the density; po
is a constant reference density; g is the gravity constant;
H = H(x) is the bottom topography; and py = po(x).

Alternatively, the pressure gradient may be written

* _d_ o dHp (4a)
ox* dx H dx do’
where
0
p(x, 6) = po(x) + Hf b'ds’. (4b)

Equations (3a) and (3b) and (4a) and (4b) are equiv-
alent analytically. However, they may differ after ap-
proximation by finite difference algebra.

The model used here (Blumberg and Mellor 1987;
Mellor 1992) invokes (3a) and (3b) to obtain the hor-
izontal pressure gradient. [ Our model has a free surface
so that p,, the surface pressure, is given by py = b(x,
0)n{x), where 7 is the surface elevation and H should
be replaced by H + 5 in (3a) and (3b). However, the
discussion of the main issue of this paper is somewhat
simpler in terms of a rigid-lid model. Results are easily
generalized to a free surface model. The calculations
cited below will be executed by our free surface model.]
Haney (1991) and others use the finite difference an-
alog of (4a) and (4b).

When initializing a sigma coordinate model, the
procedure usually is to interpolate data, b(z), at a given
horizontal location, x* = x, to b(¢); we use a cubic-
spline interpolation (Press et al. 1986). Then one finds
that the finite-difference reckoning of db*/ dx* of the
original dataset does not equal that determined in the
sigma system because each of the two terms on the
right sides of (3b) or (4a) are generally much larger
than their difference. This can be most easily seen in
the case of a field where b* = b*(z)and 3b*/dx* = O
the two terms on the right side of (3b) should cancel
and do so analytically. However, the finite-difference
representation of the terms contain truncation errors
and a net truncation error is introduced.

One way (Gary 1973) to counteract the error is to
calculate an area-averaged bg (z) = (b*(x, z)), inter-
polate that field onto the sigma field, and then subtract
it from b(x, o) before executing the finite-difference
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form of (3b). In the case where b* = b*( z), the error
is totally eliminated. In the case where b* = b(x, z),
much of the error is eliminated. This has been our
standard practice for regional models and does elimi-
nate much of the truncation error. However, for basin-
scale or global models, where vertical variability will
depart significantly from the area mean, it remains to
be shown whether or not the remaining error is sig-
nificant.

A finite-difference scheme and error evaluation. If
we refer to the computational stencil in Fig. 1, we find
that (3b) may be written

o.b* _ bix+ b1 — bisip— bisyps
odx* 26x
08 H bij—1 + bimip—1 — bix — bicix (5)
Héx 2680 ’

where o = (O’k_] + O'k)/z, H = (HI + Hi_l)/Z, ox = X;
— Xj~1, oo = Of—1 — Ok, and 6xH = H,- - Hi—1~

The error can be made most transparent by a “data”
field such that b* = b*(z), where one should obtain
0xb*/ 6x* = 0. However, if we expand b(x, o) around
some point, z, = o H,such that, in sigma coordinates,

B¥(z) = by + ("—b) [eH(x) - 2]
0z 0

5.2 2 (6)

and insert (6) into (5), we obtain the incremental error
for finite 60 and 6H,

E_a"b* zﬁaxH ﬁ +ﬂ 6__3b 4 e
Sx* 4 6x |\oz? 3 \oz3

2
X {(50)2 - 02(%{) ] . (N

+ (82b) [eH(x) — 2,]? ...
0

i—-1 i

FIG. 1. The computational stencil for Eq. (5).
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FI1G. 2. The test basin showing contours of constant ¢ that range
from —1 (the bottom) to 0 (the surface). The horizontal grid interval
is 20 km.

We have removed the overbars on ¢ and H and the
subscripts, 0, and note that all terms should now be
subscripted with appropriate ’s and k’s. The total error
will be the incremental error according to (7), summed
according to the finite-difference form of (3a).

Note that the error is null for linear profiles of b as
may be obtained directly from (5) for b oc cH(x).

Since there is a negative sign in the right side of (7),
one obtains zero incremental error when |(od,H)/
(Héc)| = 1, the condition where ¢ at i — 1 (or i)
corresponds to the same value of z for ¢ + 6o at i (or
i — 1). The condition, |(¢6,H)/(Héc)| > 1, is said
to represent a “hydrostatically inconsistent” grid since,
for fixed |6,H/H]|, the error increases for decreasing
|60/ |. However, the negative sign in (7) generally
reduces error and is therefore a fortuitous circumstance.
In any event, the error does decrease as 6 — 0 and
6H — 0 (or, equivalently, é6x — 0). In fact it would
seem to be a conceptual error to factor out do? from
the term in curly brackets to obtain do2 {1 — (a26,H?)/
(H?50?)} and then base discussion on the factor,
(a6, H)/(Hbo)|. For example, that factor, unto itself,
might lead one to believe that a choice of small d¢’s
near the bottom to resolve bottom boundary layers
might be numerically hazardous. Previously, we had
not perceived this to be the case during the course of
a detailed study of the bottom boundary layer (Mellor
1986); now, Eq. (7) corroborates that perception.

We have repeated the above analysis for (4a) and
(4b) which first can be written

ap*  po f" ob'H O0H d'b' , ,
B 4 + _—— dU .
ox*  ox Ix dx do’

G

The error in the integrand can be evaluated as before
and, somewhat to our surprise, the error is also given
by (7).

3. The error appears and disappears

A two-dimensional version of our model is applied
here to the basin and grid depicted in Fig. 2. It is ini-
tialized with the potential density,
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p z
—=1.028 - 0. —_—
o 8 —0.003 eXp(IOOO m)’

which is a close approximation to the area-averaged,
vertical distribution for the North Atlantic Ocean
(Levitus 1982). Importantly, there are no horizontal
density gradients in (x*, z) coordinates. Model cal-
culations will use a constant horizontal viscosity of
2000 m? s™! and a vertical viscosity of 10> m?s™' (a
value of zero yields essentially the same results as those
discussed below). The Coriolis parameter is 10 ™% 571,
There are 21 sigma levels with a constant spacing of
da = 0.05. There are 41 grid nodes in the x direction
with a spacing of éx = 20 km. The maximum values
of |(6.H)/H| and |(o6,H)/Héc)| are about 0.67 and
13, respectively. There is no surface forcing and the
vertical and horizontal diffusivities are null. It is only
under these circumstances that an exact solution, null
velocities and no change in density, is known.

a. A diagnostic calculation

We first run the model diagnostically (density is
fixed) for 90 days. The spatially averaged kinetic energy
and potential energy is shown in Fig. 3. The truncation
error drives the model such that the maximum kinetic
energy (~5 cm? s72) is obtained after one day; there
are barotropic waves in evidence and these decay due
to horizontal viscosity such that they have nearly van-
ished by day 90. In Fig. 4 we display the alongshore
velocities after 90 days. The fields are antisymmetric
about x = 400 km. These are the (nearly geostrophic)
velocity errors due to the errors in the calculation of
8,b*/ 6x*; the maximum error is about 7 cm s~!. The
error in the vertically averaged velocity is about 1.5
cms !,

3cm?és?

MEAN KINETIC ENERGY

POTENTIAL ENERGY

I
!
!
|
T
9

0 120 150 180

TIME (days)

0 30 60

FIG. 3. The spatially averaged kinetic energy (cm? s72) as a furiction
of time. The model is run diagnostically (density held constant) for
90 days and thereafter prognostically; the mean kinetic energy
asymptotes to zero. (Continuation of the diagnostic run is also shown;
it asymptotes to 0.70 cm? s~2.) The mean potential energy relative
to that at day 720 is also shown in the same units as the kinetic
energy.
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FiG. 4. The alongshore velocity field after the model has run di-
agnostically for 90 days. The contour interval is 0.1 cm s™'. The
largest velocities are +£5 cm s™' near the surface and +7 ¢cm s ™' near
the 1000-m isobath. After running prognostically for a subsequent
two years, the velocities have decreased by almost two orders of mag-
nitude; they decrease indefinitely with further run time.

The model has also been run with the resolution
refined by a factor of 2. The change in 85 has little
effect but the error due to the change in éx and, there-
fore, 6, H reduces the error by a factor of 4. All of this
is in compliance with (7).

b. Prognostic continuation

After day 90, the density field is allowed to advect
in the (x, o) plane; the velocity field dissipates and the
mean Kinetic energy and potential energy decrease. Af-
ter day 720, the maximum error is 0.2 cm s '; the
error continues to decrease with additional run time.

The velocity field has spun down under the control
of viscosity while at the same time the density field has
advectively adjusted so as to cancel out the false baro-
clinicity due to the sigma coordinate truncation error.
In the appendix, the spindown problem is formulated
as a linear, low-Rossby number problem wherein ve-
locity advection is neglected and where buoyancy ad-
vection is replaced by wN?; w is the vertical velocity
and N(z) is the Brunt-V4isild frequency. The process
is analogous to the spindown of oceanic rings (Flier]
and Mied 1985). In any event, the density field has
relaxed to a new field such that 6,.6*/ 6x* = 0, as eval-
vated according to (5). The new field, plotted in (x*,
z) coordinates, would not exhibit a discernible differ-
ence compared to the original density field. In Fig. S5a
we show the change in the density field in sigma-6 units.

Now, the other quantity needed by some models 1s
the vertical stability that is used in turbulence param-
eterization for vertical mixing (Munk and Anderson
1948; Mellor and Yamada 1982; Pacanowski and Phi-
lander 1981) and that also factors into the Rossby ra-
dius of deformation. In Fig. 5b we plot the change in
the Brunt-Vdisild frequency squared, which can be
used to calculate a Richardson number or the Rossby
radius, and we obtain values of about 6% in the shal-
lowest water and near the bottom; smaller values pre-
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vail elsewhere. This is not a physically significant
change.

What we have learned from the simple test problem
is that the system of interpolating to the o coordinate
grid, with subsequent use of transformations such as
(3a) and (3b), will produce errors in the velocity field
(and surface elevation), but upon model prognostic
execution, these velocity errors are eliminated from
the final equilibrium fields; density errors are created,
however. The density errors can be evaluated in terms
of vertical density gradients and these errors do seem
rather inconsequential.

We believe, but cannot prove, that the “advective
error elimination” process should prevail in the general
case with surface forcing and with diffusivities. Vari-
ations in b(x, y, o, 1) due to surface buoyancy flux or
through dynamical adjustment to surface wind stress
are likely to be surface trapped and to be small relative
to initial errors. The newly evolved b(x, y, g, t), con-
stituting new initial conditions, should also be advec-
tively eliminated. However, to the best of our knowl-
edge, ways of quantitatively evaluating errors for more
general cases are not known.

DEPTH (KM)

DISTANCE (KM)

DEPTH (KM)

DISTANCE (KM)

Fi1G. 5. (a) The density field change in sigma-f units between day
720 and day 0; the contour interval is 0.01 and the largest change is
a negative 0.07. (b) The percentage change in the Brunt-Viisald
frequency squared between day 720 and day 0; the contour interval
is 1% and the largest change is a negative 6%. The solid lines are zero
contours.
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(A) MODEL GRID
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=
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FiG. 6. (a) The North Atlantic model grid. (b) The bottom to-
pography. (¢) The bottom topography after smoothing such that 6H/
H < 0.4. The contour interval in (b) and (¢) is 500 m; dashed contours
indicate H > 4000 m.

The above results suggest that a way of coping with
the sigma coordinate error is to simply run the model
to a statistically stationary (but not necessarily steady)
equilibrium, the solution depending on the surface and
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lateral boundary conditions. This strategy should apply
in the case of climate modeling and any application
where run time is longer than diffusion time scales. For
short model runs, we propose another way to defeat
the problem in section 5, based on experience gained
in the next section.

4. Three-dimensional diagnostic calculations

Suppose one does not wish to run the model to equi-
librium. One may have in hand a climatology that is
believed to be correct at least for the larger scales. One
may wish to obtain the velocity fields associated with
the climatology.

At the moment we are working on a model of the
North Atlantic; we use this as a test bed to investigate
the pressure gradient error in a more or less real ap-
plication. Here, it serves our purpose to run the rmodel
diagnostically; that is, the model temperatures and sa-
linities are fixed at the values obtained by Levitus
(1982), which are interpolated onto the model grid.
An equation of state (Mellor 1991) provides density
as a function of potential temperature and salinitv. The
orthogonal, curvilinear, model grid and two bathy-
metries are shown in Fig. 6. The grid element size is
variable such that in the Gulf Stream and the Gulf of
Mexico the elements are 30-50 km, whereas in the
northeast Atlantic they are as large as 200 km. We will
refer both to the standard Levitus z-level grid (33 levels
with 10-m intervals near the surface and 500-m inter-
vals below a depth of 2000 m) and the sigma grid (15
sigma levels with smallest 6 = 0.002 near the surface
and 6o = 0.125 below ¢ = —0.125). With this coarse
resolution we believe that results are improved with
some topographical smoothing. With an eye on (7),
the topography at two adjacent grid elements are mu-
tually adjusted, so that |6H/H| < SF (where SF is a
slope factor that ranges from 0 to 2.0, the maximum
theoretical value) while conserving the total water col-
umn volume of the two grid elements. The grid is then
repeatedly scanned in alternating directions until there
are no further changes. Note that most topographical
values are unaffected with say a value of SF = 0.4. For
example an adjacent gridpoint change in depth from
1000 to 1500 m would, per se, not be altered. However,
we do add a further five-point Laplacian smoother;
this filter is mainly cosmetic although in the poorly
resolved northwestern part of the model, it does add
further noticeable smoothing.

Figure 6b is the topography interpolated from the
Navy’s DBDBS 1/12° X 1/13° bathymetric file after the
Laplacian filter, but without slope adjustment (SF
= 2.0; a maximum value of |6H/H| ~ 1 is obtained),
whereas for Fig. 6¢ the value SF = 0.4 is stipulated.
(The maximum slope, 6H/dy ~ 0.05, is obtained at
the Puerto Rican Trench before and after slope ad-
justment.) Note that, except for some widening of the
continental slope, most of the topographic features of
the basin are unaffected by the smoothing procedure.
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Another type of diagnostic calculation by Mellor et
al. (1982), repeated and extended by Greatbatch et al.
(1991), shows that the total transport (vertically in-
tegrated velocity ) normal to the zonal transect at 10°N
is approximately null. For the limited basin used here,
we have set to zero the total transport normal to 10°N
and also on the northern boundaries where the total
transport is known to be small. As detailed, for ex-
ample, by Ezer and Mellor (1992), the vertical distri-
butions of horizontal velocities are governed by geo-
strophy on the open boundaries and the normal com-
ponents integrate to zero. The model is driven by
annually averaged climatological winds, obtained from
the Comprehensive Ocean-Atmosphere Data Set an-
alyzed by Wright (1988); a detailed description of the
surface forcing formulation in the model can be found
in Ezer and Mellor (1992).

The following three types of calculation were per-
formed:

(1) The horizontal density gradients are evaluated
on the curvilinear horizontal grid but with the stan-
dard z-level depths. The vertical integration in (3a)
is also carried out on the same grid. Then the gra-
dients are interpolated to the sigma grid; they are, of
course, held constant during the diagnostic calcu-
lation. The pressure gradient truncation error is null
in this case.

(II) Our standard “‘sigma” calculation with no cor-
rections. Thus, we first interpolate temperature and
salinity from the horizontal 1° X 1° Levitus grid with
standard z-level depths onto the horizontal curvilinear
grid but with the same standard z levels. Next, with

i

]
”

o-coord.

z-coord.

F1G. 7. The left-hand side of the diagram depicts a z-level coordinate
system on the horizontal curvilinear grid. The right side depicts a
sigma coordinate system. Temperatures, salinities, or densities are
denoted by the crosses; density gradients are denoted by the open
circle and arrow.
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FiG. 8. The volume-averaged mean kinetic energy from the three-
dimensional diagnostic calculations. The pressure gradient forcing is
calculated: I—with density gradients evaluated on the z levels (dotted
line); [I—with the standard sigma-level formulation (solid line); and
III—with the standard sigma-level formulation but where the area
mean density field is first subtracted (dashed line).

reference to Fig. 7, the temperatures and salinities are
interpolated to the sigma grid and the equation of state
provides densities. The baroclinic density gradients
are calculated according to (5) on the sigma grid and
then integrated according to the finite-difference
analog of (3a).

(III) The same as case II except that the area-av-
eraged density is first subtracted before the right side
of (5) is evaluated. Note that p = p;(0, S) + p2(0, S,
p); we use the UNESCO equation of state as modified
by Mellor (1991). The second, pressure-dependent part
is weakly dependent on potential temperature @ and
salinity S. Subtracting the area average p(z) eliminates
almost all of the error associated with the second term
and some of the error associated with the first term.

It should be noted that, while the pressure gradient
truncation error, as we have defined it, is null in case
I, there is an error associated with the fact that, as il-
lustrated in Fig. 7, there are points at, say, / that are
adjacent to points at i — 1, which are under the bottom.
In these cases we have set the gradient to zero. A pre-
sumably more rational interpolation scheme would
lead us back to (5). A recent paper by Gerdes (1993)
deals with a comparison of sigma coordinate and z-
level models and indicates that errors associated with
the latter are more pronounced than those of the
former.

The diagnostic calculation is run for 30 days and
the volume-averaged kinetic energies are shown in Fig.
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FIG. 9. The surface elevation (left panels) and the total streamfunction (right panels): for case I, where
density gradients are calculated on the z-level grid; case II, where they are evaluated on the sigma grid; and
case 111, which is the same as II except that the area mean density is first subtracted before calculation of the
density gradients.

8 for the three cases. (Note that equilibrium is achieved
faster in the three-dimensional calculation compared
to the two-dimensional calculation; presumably baro-
tropic waves can disburse more readily in the former
case.) The total streamfunction, indicative of the deeper
velocities, and the surface elevation whose gradients
represent the surface geostrophic velocity are plotted
in Fig. 9 for the three cases.

It is somewhat surprising to us that there are so few
differences in the three cases but that is our finding.
In particular, there is almost no difference in surface

elevation. There are differences in the total stream-
function between cases I and II, particularly in the
Gulf of Mexico; however, this difference is reduced
significantly by the correction used in case III. Note
that the resolution is quite crude here relative to
emerging computer capabilities. Improved vertical
and horizontal resolution should further narrow the
differences. In particular, recall that the sigma coor-
dinate, pressure gradient error, which now seems
rather benign, goes as the square of horizontal and
vertical increments according to (7).
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5. Conclusions
We conclude the following:

1) The sigma coordinate, pressure gradient error is
not numerically divergent; the error decreases as the
square of both the vertical and horizontal grid element
size. More generally, (7) provides a tool to evaluate
the error.

2) There is evidence presented here that initial
pressure gradient errors in dynamic variables will be
advectively eliminated. There will be created small
compensatory errors in the density (and temperature
and salinity) field.

3) An evaluation of initial pressure gradient errors
in the case of a relatively crude resolution Atlantic
Ocean model indicates that the errors should not cause
serious concern. The errors are reduced by subtraction
of the area-averaged density gradient before evaluation
of the density gradient on the sigma coordinate grid.

We finally note that the procedure developed in sec-
tion 4, where the density gradient is first evaluated on
the z-level grid, suggests a simple way of correcting the
initial sigma error. We write (3b) as

ab* b 06H8b+

ax* ax  Haxde  eX o)
Evaluate the left side on the standard z-level grid, and
the first two terms on the right on the sigma grid; then
evaluate ¢,(x, o). During all subsequent calculations
on the sigma grid, diagnostic or prognostic, e,(x, o) is
held constant. In this way “the pressure gradient error”
is canceled. This procedure works in the case of section
4 wherein the initial velocity field is null and renders
cases Il and III identical to case I in section 4, A related
idea has previously been proposed by Sundgvist
(1976).

APPENDIX
The Velocity Error Removal Process

1t is useful to reduce the process of density error
cancellation and velocity error removal to the simplest
relevant system.

Let (u, v, w) and b be the velocity and buoyancy
that evolve as a result of an initial pressure gradient
truncation error e¢(x, z). The relevant linear problem
is (exclusive of appropriate boundary and initial con-
ditions):

g_ZJr?a—j:O’ (A1)
—f%=z—§+ ex, z), (A2)
%+fu—A§722, (A3)
g—f—Nzw=O (A4)
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Att=0,u=w=>b=0and dv/dz=—f"Tx,2). It
can then be shown that the system decays to the
asymptotic state, u = v = w = b/t = 0 and 9b/dx
= —¢(x, z). For a horizontal scale of 100 km appro-
priate to the topographic scale in Fig. 2 and 4 = 2000
m?s~!, we obtain a viscous decay timescale of about
60 days, which is approximately the decay time in Fig.
3 as the calculation switches from diagnostic to prog-
nostic. Figure 3 also shows a longer decay scale cor-
responding to barotropic wave decay (see the curve
labeled “diagnostic”); for the appropriate scale of one-
half basin width, we obtain a timescale of about 1000
days for that irrelevant process.

Note that the advection term, N2w in (A4), is crucial
to the above adjustment process, and so we have used
the term “‘advectively eliminated” to describe the pro-
cess of density gradient error cancellation and velocity
error removal.
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