36 research outputs found

    Neuroendoscopy of the central nervous system

    No full text

    Brainstem tumors: Current management and future directions

    No full text
    Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS) tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors

    Angiocentric Glioma: A Case Series.

    No full text
    OBJECT: Angiocentric glioma was recently recognized as a distinct clinicopathological entity in the 2007 World Health Organization Classification of Tumours of the Central Nervous System. The authors present the first 3 pediatric cases of angiocentric glioma encountered at their institution and review the literature of reported cases to elucidate the characteristics and outcomes of pediatric patients with this novel tumor. METHODS: The children in the 3 cases of angiocentric glioma were 10, 10, and 13 years old. Two presented with intractable seizures and 1 with worsening headache and several months of decreasing visual acuity. Twenty-five cases, including the 3 first described in the present paper, were culled from the literature. RESULTS: In all 3 cases, MR imaging demonstrated a superficial, nonenhancing, T2-hyperintense lesion in the left temporal lobe. Histologically, the tumors were composed of monomorphous cells with a strikingly perivascular orientation that were variably reactive for glial fibrillary acidic protein and epithelial membrane antigen. Surgical treatment resulted in gross-total resection in all 3 cases. By 24, 9, and 6 months after surgery, all 3 patients remained seizure free without focal neurological deficits. CONCLUSIONS: Among 25 cases of angiocentric glioma, seizure was the most common symptom at presentation. Magnetic resonance imaging demonstrated supratentorial, nonenhancing, T1-hypointense, T2-hyperintense lesions. Gross-total resection of this lesion yields excellent results

    Pediatric skull fracture diagnosis: should 3D CT reconstructions be added as routine imaging?

    Full text link
    OBJECT The authors compared the efficacy of combining 2D+3D CT reconstructions with standard 2D CT images in the diagnosis of linear skull fractures in children with head trauma. METHODS This was a retrospective evaluation of consecutive head CT studies of children presenting with head trauma. Two experienced pediatric neuroradiologists in consensus created the standard of reference. Three readers independently evaluated the 2D CT images alone and then in combination with the 3D reconstructions for the diagnosis of linear skull fractures. Sensitivity and specificity in the diagnosis of linear skull fractures utilizing 2D and 2D+3D CT in combination were measured for children less than 2 years of age and for all children for analysis by the 3 readers. RESULTS Included in the study were 250 consecutive CT studies of 250 patients (167 boys and 83 girls). The mean age of the children was 7.82 years (range 4 days to 17.4 years). 2D+3D CT combined had a higher sensitivity and specificity (83.9% and 97.1%, respectively) compared with 2D alone (78.2% and 92.8%, respectively) with statistical significance for specificity (p < 0.05) in children less than 2 years of age. 2D+3D CT combined had a higher sensitivity and specificity (81.3% and 90.5%, respectively) compared with 2D alone (74.5% and 89.1%, respectively) with statistical significance for sensitivity (p < 0.05) in all children. CONCLUSIONS In this study, 2D+3D CT in combination showed increased sensitivity in the diagnosis of linear skull fractures in all children and increased specificity in children less than 2 years of age. In children less than 2 years of age, added confidence in the interpretation of fractures by distinguishing them from sutures may have a significant implication in the setting of nonaccidental trauma. Furthermore, 3D CT is available at no added cost, scan time, or radiation exposure, providing trainees and clinicians with limited experience an additional valuable tool for routine imaging of pediatric head trauma
    corecore