4 research outputs found

    A Chiral <sup>19</sup>F NMR Reporter of Foldamer Conformation in Bilayers

    No full text
    Understanding and controlling peptide foldamer conformation in phospholipid bilayers is a key step toward their use as molecular information relays in membranes. To this end, a new 19F “reporter” tag has been developed and attached to dynamic peptide foldamers. The (R)-1-(trifluoromethyl)ethylamido ((R)-TFEA) reporter was attached to the C-terminus of α-amino-iso-butyric acid (Aib) foldamers. Crystallography confirmed that the foldamers adopted 310 helical conformations. Variable temperature (VT) NMR spectroscopy in organic solvents showed that the (R)-TFEA reporter had an intrinsic preference for P helicity, but the overall screw-sense was dominated by a chiral “controller” at the N-terminus. The 19F NMR chemical shift of the CF3 resonance was correlated with the ability of different N-terminal groups to induce either an M or a P helix in solution. In bilayers, a similar correlation was found. Solution 19F NMR spectroscopy on small unilamellar vesicle (SUV) suspensions containing the same family of (R)-TFEA-labeled foldamers showed broadened but resolvable 19F resonances, with each chemical shift mirroring their relative positions in organic solvents. These studies showed that foldamer conformational preferences are the same in phospholipid bilayers as in organic solvents and also revealed that phospholipid chirality has little influence on conformation

    Disorder and Sorption Preferences in a Highly Stable Fluoride-Containing Rare-Earth <i>fcu</i>-Type Metal–Organic Framework

    No full text
    Rare-earth (RE) metal–organic frameworks (MOFs) synthesized in the presence of fluorine-donating modulators or linkers are an important new subset of functional MOFs. However, the exact nature of the REaXb core of the molecular building block (MBB) of the MOF, where X is a ÎŒ2 or 3-bridging group, remains unclear. Investigation of one of the archetypal members of this family with the stable fcu framework topology, Y-fum-fcu-MOF (1), using a combination of experimental techniques, including high-field (20 T) solid-state nuclear magnetic resonance spectroscopy, has determined two sources of framework disorder involving the ÎŒ3-X face-capping group of the MBB and the fumarate (fum) linker. The core of the MBB of 1 is shown to contain a mixture of ÎŒ3-F– and (OH)− groups with preferential occupation at the crystallographically different face-capping sites that result in different internally lined framework tetrahedral cages. The fum linker is also found to display a disordered arrangement involving bridging– or chelating–bridging bis-bidentate modes over the fum linker positions without influencing the MBB orientation. This linker disorder will, upon activation, result in the creation of Y3+ ions with potentially one or two additional uncoordinated sites possessing differing degrees of Lewis acidity. Crystallographically determined host–guest relationships for simple sorbates demonstrate the favored sorption sites for N2, CO2, and CS2 molecules that reflect the chemical nature of both the framework and the sorbate species with the structural partitioning of the ÎŒ3-groups apparent in determining the favored sorption site of CS2. The two types of disorder found within 1 demonstrate the complexity of fluoride-containing RE-MOFs and highlight the possibility to tune this and other frameworks to contain different proportions and segregations of ÎŒ3-face-capping groups and degrees of linker disorder for specifically tailored applications

    Disorder and Sorption Preferences in a Highly Stable Fluoride-Containing Rare-Earth <i>fcu</i>-Type Metal–Organic Framework

    No full text
    Rare-earth (RE) metal–organic frameworks (MOFs) synthesized in the presence of fluorine-donating modulators or linkers are an important new subset of functional MOFs. However, the exact nature of the REaXb core of the molecular building block (MBB) of the MOF, where X is a ÎŒ2 or 3-bridging group, remains unclear. Investigation of one of the archetypal members of this family with the stable fcu framework topology, Y-fum-fcu-MOF (1), using a combination of experimental techniques, including high-field (20 T) solid-state nuclear magnetic resonance spectroscopy, has determined two sources of framework disorder involving the ÎŒ3-X face-capping group of the MBB and the fumarate (fum) linker. The core of the MBB of 1 is shown to contain a mixture of ÎŒ3-F– and (OH)− groups with preferential occupation at the crystallographically different face-capping sites that result in different internally lined framework tetrahedral cages. The fum linker is also found to display a disordered arrangement involving bridging– or chelating–bridging bis-bidentate modes over the fum linker positions without influencing the MBB orientation. This linker disorder will, upon activation, result in the creation of Y3+ ions with potentially one or two additional uncoordinated sites possessing differing degrees of Lewis acidity. Crystallographically determined host–guest relationships for simple sorbates demonstrate the favored sorption sites for N2, CO2, and CS2 molecules that reflect the chemical nature of both the framework and the sorbate species with the structural partitioning of the ÎŒ3-groups apparent in determining the favored sorption site of CS2. The two types of disorder found within 1 demonstrate the complexity of fluoride-containing RE-MOFs and highlight the possibility to tune this and other frameworks to contain different proportions and segregations of ÎŒ3-face-capping groups and degrees of linker disorder for specifically tailored applications

    AtomAccess: A Predictive Tool for Molecular Design and Its Application to the Targeted Synthesis of Dysprosium Single-Molecule Magnets

    No full text
    Isolated dysprosocenium cations, [Dy(CpR)2]+ (CpR = substituted cyclopentadienyl), have recently been shown to exhibit superior single-molecule magnet (SMM) properties over closely related complexes with equatorially bound ligands. However, gauging the crossover point at which the CpR substituents are large enough to prevent equatorial ligand binding, but small enough to approach the metal closely and generate strong crystal field splitting has required laborious synthetic optimization. We therefore created the computer program AtomAccess to predict the accessibility of a metal binding site and its ability to accommodate additional ligands. Here, we apply AtomAccess to identify the crossover point for equatorial coordination in [Dy(CpR)2]+ cations in silico and hence predict a cation that is at the cusp of stability without equatorial interactions, viz., [Dy(Cpttt)(Cp*)]+ (Cpttt = C5H2tBu3-1,2,4, Cp* = C5Me5). Upon synthesizing this cation, we found that it crystallizes as either a contact ion-pair, [Dy(Cpttt)(Cp*){Al[OC(CF3)3]4-Îș-F}], or separated ion-pair polymorph, [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4]·C6H6. Upon characterizing these complexes, together with their precursors, yttrium and yttrium-doped analogues, we find that the contact ion-pair shows inferior SMM properties to the separated ion-pair, as expected, due to faster Raman and quantum tunneling of magnetization relaxation processes, while the Orbach region is relatively unaffected. The experimental verification of the predicted crossover point for equatorial coordination in this work tests the limitations of the use of AtomAccess as a predictive tool and also indicates that the application of this type of program shows considerable potential to boost efficiency in exploratory synthetic chemistry
    corecore