715 research outputs found

    Activation of tyrosine kinases by mutation of the gatekeeper threonine.

    Get PDF
    Protein kinases targeted by small-molecule inhibitors develop resistance through mutation of the gatekeeper threonine residue of the active site. Here we show that the gatekeeper mutation in the cellular forms of c-ABL, c-SRC, platelet-derived growth factor receptor-alpha and -beta, and epidermal growth factor receptor activates the kinase and promotes malignant transformation of BaF3 cells. Structural analysis reveals that a network of hydrophobic interactions-the hydrophobic spine-characteristic of the active kinase conformation is stabilized by the gatekeeper substitution. Substitution of glycine for the residues constituting the spine disrupts the hydrophobic connectivity and inactivates the kinase. Furthermore, a small-molecule inhibitor that maximizes complementarity with the dismantled spine (compound 14) inhibits the gatekeeper mutation of BCR-ABL-T315I. These results demonstrate that mutation of the gatekeeper threonine is a common mechanism of activation for tyrosine kinases and provide structural insights to guide the development of next-generation inhibitors

    Reprogramming Cellular Identity for Regenerative Medicine

    Get PDF
    Although development leads unidirectionally toward more restricted cell fates, recent work in cellular reprogramming has proven that one cellular identity can strikingly convert into another, promising countless applications in biomedical research and paving the way for modeling diseases with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. Here, we review evidence demonstrating that, because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. We also discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration

    Prospects for Stem Cell-Based Therapy

    Get PDF
    Resident pools of somatic stem cells in many organs are responsible for tissue maintenance and repair. The goal of regenerative medicine is to exploit these cells either by transplanting them from an exogenous source or by activating endogenous stem cells pharmacologically. For diseases caused by mutations in a single gene, the therapeutic goal is tissue replacement using stem cells engineered to correct the genetic defect. However, a number of technical hurdles must be overcome before therapies based on pluripotent human stem cells can enter the clinic

    microRNAs become macro players in somatic cell reprogramming

    Get PDF
    Embryonic stem cell specific microRNAs (miRNAs) have previously been shown to enhance the efficiency of transcription-factor-based reprogramming. However, whether reprogramming could be achieved entirely by miRNAs remained unclear. A recent report shows that the expression of the miR-302/367 cluster of miRNAs can directly reprogram somatic cells without the use of any transcription factors. This new method raises interesting questions about the mechanisms of reprogramming and is likely to facilitate the generation of induced pluripotent stem cells for potential future clinical use

    Cellular Therapy for Fanconi Anemia: The Past, Present, and Future

    Get PDF
    Allogeneic hematopoietic cell transplantation (HCT) remains the only proven curative therapy for the hematologic manifestation of Fanconi anemia (FA). Over the past 2 decades, major advances have been made such that transplant outcomes have markedly improved. With the development of in vitro fertilization and preimplantation genetic diagnosis, HLA-matched sibling donor umbilical blood transplantation may be an option for more patients with FA. Recently, the use of pluripotent stem cells has been explored as a novel approach to model the hematopoietic developmental defects in FA, and to provide a potential source of autologous stem cells that can be genetically manipulated and used to generate corrected hematopoietic progenitors

    Activation of Phosphatidylinositol 3-Kinase in Cells Expressing abl Oncogene Variants

    Get PDF
    A phosphoinositide kinase specific for the D-3 position of the inositol ring, phosphatidylinositol (PI) 3-kinase, associates with activated receptors for platelet-derived growth factor, insulin, and colony-stimulating factor 1, with products of the oncogenes src, fms, yes, crk, and with polyomavirus middle T antigen. Efficient fibroblast transformation by proteins of the abl and src oncogene families requires activation of their protein-tyrosine kinase activity and membrane association via an amino-terminal myristoylation. We have demonstrated that the PI 3-kinase directly associates with autophosphorylated, activated protein-tyrosine kinase variants of the abl protein. In vivo, this association leads to accumulation of the highly phosphorylated products of PI 3-kinase, PI-3,4-bisphosphate and PI-3,4,5-trisphosphate, only in myristoylated, transforming abl protein variants. Myristoylation thus appears to be required to recruit PI 3-kinase activity to the plasma membrane for in vivo activation and correlates with the mitogenicity of the abl protein variants

    Australian Group on Antimicrobial Resistance Australian Enterobacteriaceae Sepsis Outcome Programme annual report, 2014

    Get PDF
    The Australian Group on Antimicrobial Resistance performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric Gram-negative pathogens. The 2014 survey was the second year to focus on blood stream infections. During 2014, 5,798 Enterobacteriaceae species isolates were tested using commercial automated methods (Vitek 2, BioMérieux; Phoenix, BD) and results were analysed using the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2015). Of the key resistances, non-susceptibility to the third-generation cephalosporin, ceftriaxone, was found in 9.0%/9.0% of Escherichia coli (CLSI/EUCAST criteria) and 7.8%/7.8% of Klebsiella pneumoniae, and 8.0%/8.0% K. oxytoca. Non-susceptibility rates to ciprofloxacin were 10.4%/11.6% for E. coli, 5.0%/7.7% for K. pneumoniae, 0.4%/0.4% for K. oxytoca, and 3.5%/6.5% in Enterobacter cloacae. Resistance rates to piperacillin-tazobactam were 3.2%/6.8%, 4.8%/7.2%, 11.1%/11.5%, and 19.0%/24.7% for the same 4 species respectively. Fourteen isolates were shown to harbour a carbapenemase gene, 7 blaIMP-4, 3 blaKPC-2, 3 blaVIM-1, 1 blaNDM-4, and 1 blaOXA-181-lke
    corecore