54 research outputs found

    Interferometric biosensing platform for multiplexed digital detection of viral pathogens and biomarkers

    Full text link
    Thesis (Ph.D.)--Boston UniversityLabel-free optical biosensors have been established as proven tools for monitoring specific biomolecular interactions. However, compact and robust embodiments of such instruments have yet to be introduced in order to provide sensitive, quantitative, and high-throughput biosensing for low-cost research and clinical applications. Here we present the interferometric reflectance-imaging sensor (IRIS). IRIS allows sensitive label free analysis using an inexpensive and durable multi-color LED illumination source on a silicon based surface. IRIS monitors biomolecular interaction through measurement of biomass addition to the sensor's surface. We demonstrate the capability of this system to dynamically monitor antigen-antibody interactions with a noise floor of 5.2 pg/mm^2 and DNA single mismatch detection under isothermal melting conditions in an array format. Ensemble detection of binding events using IRIS did not provide the sensitivity needed for detection of infectious disease and biomarkers at clinically relevant concentrations. Therefore, a new approach was adapted to the IRIS platform that allowed the detection and identification of individual nanoparticles on the sensor's surface. The new detection method was te1med single-particle IRIS (SP-IRIS). We developed two detection modalities for SP-IRIS. The first modality is when the target is a nanoparticle such as a virus. We verified that SP-IRIS can accurately detect and size individual viral particles. Then we demonstrated that single nanoparticle counting and sizing methodology on SP-IRIS leads to a specific and sensitive virus sensor that can be multiplexed. Finally, we developed an assay for the detection of Ebola and Marburg. A detection limit of 3 x 10^3 PFU/ml was demonstrated for vesicular stomatitis virus (VSV) pseudotyped with Ebola or Marburg virus glycoprotein. We have demonstrated that virus detection can be done in human whole blood directly without the need for sample preparation. The second modality of SP-IRIS we developed was single molecule counting of biomarkers utilizing a sandwich assay with detection probes labeled with gold nanoparticles. We demonstrated the use of single molecule counting in a nucleic acid assay for melanoma biomarker detection. We showed that a single molecule counting assay can lead to detection limits in the attomolar range. The improved sensitivity of IRIS utilizing single nanoparticle detection holds promise for a simple and low-cost technology for rapid virus detection and multiplexed molecular screening for clinical applications

    A digital microarray using interferometric detection of plasmonic nanorod labels

    Full text link
    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and dynamic range of traditional fluorescence microarrays compared to other techniques have been the technology's Achilles' Heel, and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ('digital') regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about three orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10x objective lens. This approach does not require any chemical enhancement such as silver deposition, and scans arrays with a throughput similar to commercial fluorescence devices. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about one million directly from a single scan

    A digital microarray using interferometric detection of plasmonic nanorod labels

    Full text link
    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and dynamic range of traditional fluorescence microarrays compared to other techniques have been the technology's Achilles' Heel, and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ('digital') regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about three orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10x objective lens. This approach does not require any chemical enhancement such as silver deposition, and scans arrays with a throughput similar to commercial fluorescence devices. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about one million directly from a single scan.First author draf

    Polarization enhanced interferometric imaging

    Full text link
    https://patentimages.storage.googleapis.com/1e/21/aa/dee6cbdf9a3542/US11428626.pdfPublished versio

    Digital microarrays: single-molecule readout with interferometric detection of plasmonic nanorod labels

    Full text link
    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technologyā€™s Achillesā€™ heel and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule (ā€œdigitalā€) regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platformā€™s primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about 3 orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10Ɨ objective lens. This approach does not require any chemical signal enhancement such as silver deposition and scans arrays with a throughput similar to commercial fluorescence scanners. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about 6 orders of magnitude directly from a single scan. As a proof-of-concept digital protein microarray assay, we demonstrated detection of hepatitis B virus surface antigen in buffer with a limit of detection of 3.2 pg/mL. More broadly, the techniqueā€™s simplicity and high-throughput nature make digital microarrays a flexible platform technology with a wide range of potential applications in biomedical research and clinical diagnostics.The authors wish to thank Oguzhan Avci and Jacob Trueb for thoughtful comments and suggestions regarding numerical optimization of the optical system. This work was funded in part by a research contract with ASELSAN, Inc. and the Wallace H. Coulter Foundation 2010 Coulter Translational Award. (ASELSAN, Inc.; Wallace H. Coulter Foundation Coulter Translational Award)Accepted manuscrip

    Digital detection of exosomes by interferometric imaging

    Get PDF
    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30ā€“100ā€‰nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50ā€‰nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20ā€‰uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders.This work was supported by Regione Lombardia and Fondazione Cariplo through POR-FESR, project MINER (ID 46875467); Italian Ministry of Health, Ricerca Corrente. This work was partially supported by The Scientific and Technological Research Council of Turkey (grant #113E643). (Regione Lombardia; 46875467 - Fondazione Cariplo through POR-FESR, project MINER; Italian Ministry of Health, Ricerca Corrente; 113E643 - Scientific and Technological Research Council of Turkey)Published versio

    Multiplexed affinity measurements of extracellular vesicles binding kinetics.

    Get PDF
    Extracellular vesicles (EVs) have attracted significant attention as impactful diagnostic biomarkers, since their properties are closely related to specific clinical conditions. However, designing experiments that involve EVs phenotyping is usually highly challenging and time-consuming, due to laborious optimization steps that require very long or even overnight incubation durations. In this work, we demonstrate label-free, real-time detection, and phenotyping of extracellular vesicles binding to a multiplexed surface. With the ability for label-free kinetic binding measurements using the Interferometric Reflectance Imaging Sensor (IRIS) in a microfluidic chamber, we successfully optimize the capture reaction by tuning various assay conditions (incubation time, flow conditions, surface probe density, and specificity). A single (less than 1 h) experiment allows for characterization of binding affinities of the EVs to multiplexed probes. We demonstrate kinetic characterization of 18 different probe conditions, namely three different antibodies, each spotted at six different concentrations, simultaneously. The affinity characterization is then analyzed through a model that considers the complexity of multivalent binding of large structures to a carpet of probes and therefore introduces a combination of fast and slow association and dissociation parameters. Additionally, our results confirm higher affinity of EVs to aCD81 with respect to aCD9 and aCD63. Single-vesicle imaging measurements corroborate our findings, as well as confirming the EVs nature of the captured particles through fluorescence staining of the EVs membrane and cargo.Ignition Program - Boston University; INDEX (766466) - Horizon 2020; iCorps (2027109) - National Science Foundation; PFI-TT (1941195) - National Science FoundationPublished versio

    Thyroid Function and Perchlorate in Drinking Water: An Evaluation among California Newborns, 1998

    Get PDF
    Perchlorate (ClO(4)(āˆ’)) has been detected in groundwater sources in numerous communities in California and other parts of the United States, raising concerns about potential impacts on health. For California communities where ClO(4)(āˆ’) was tested in 1997 and 1998, we evaluated the prevalence of primary congenital hypothyroidism (PCH) and high thyroid-stimulating hormone (TSH) levels among the 342,257 California newborns screened in 1998. We compared thyroid function results among newborns from 24 communities with average ClO(4)(āˆ’) concentrations in drinking water > 5 Ī¼g/L (n = 50,326) to newborns from 287 communities with average concentrations ā‰¤5 Ī¼g/L (n = 291,931). ClO(4)(āˆ’) concentrations obtained from the California Drinking Water Program provided source-specific data for estimating weighted average concentrations in community water. Fifteen cases of PCH from communities with average concentration > 5 Ī¼g/L were observed, with 20.4 expected [adjusted prevalence odds ratio (POR) = 0.71; 95% confidence interval (CI), 0.40ā€“1.19]. Although only 36% of all California newborns were screened before 24 hr of age in 1998, nearly 80% of newborns with high TSH were screened before 24 hr of age. Because of the physiologic postnatal surge of TSH, the results for newborns screened before 24 hr were uninformative for assessing an environmental impact. For newborns screened ā‰„24 hr, the adjusted POR for high TSH was 0.73 (95% CI, 0.40ā€“1.23). All adjusted odds ratios (ORs) were controlled for sex, ethnicity, birth weight, and multiple birth status. Using an assessment of ClO(4)(āˆ’) in drinking water based on available data, we did not observe an association between estimated average ClO(4)(āˆ’) concentrations > 5 Ī¼g/L in drinking water supplies and the prevalence of clinically diagnosed PCH or high TSH concentrations

    Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS)

    Get PDF
    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular affinities and specificities are useful for fully characterizing the systems under investigation

    Small extracellular vesicles modulated by Ī±VĪ²3 integrin induce neuroendocrine differentiation in recipient cancer cells

    Get PDF
    The ability of small extracellular vesicles (sEVs) to reprogram cancer cells is well established. However, the specific sEV components able to mediate aberrant effects in cancer cells have not been characterized. Integrins are major players in mediating sEV functions. We have previously reported that the Ī±VĪ²3 integrin is detected in sEVs of prostate cancer (PĪ±VĪ²3rCa) cells and transferred into recipient cells. Here, we investigate whether sEVs from -expressing cells affect tumour growth differently than sEVs from control cells that do not express Ī±VĪ²3. We compared the ability of sEVs to stimulate tumour growth, using sEVs isolated from PrCa C4-2B cells by iodixanol density gradient and characterized with immunoblotting, nanoparticle tracking analysis, immunocapturing and single vesicle analysis. We incubated PrCa cells with sEVs and injected them subcutaneously into nude mice to measure in vivo tumour growth or analysed in vitro their anchorage-independent growth. Our results demonstrate that a single treatment with sEVs shed from C4-2B cells that express Ī±VĪ²3, but not from control cells, stimulates tumour growth and induces differentiation of PrCa cells towards a neuroendocrine phenotype, as quantified by increased levels of neuroendocrine markers. In conclusion, the expression of Ī±VĪ²3 integrin generates sEVs capable of reprogramming cells towards an aggressive phenotype
    • ā€¦
    corecore