6 research outputs found

    Rapid Suppression of the Spin Gap in Zn-doped CuGeO_3 and SrCu_2O_3

    Full text link
    The influence of non-magnetic impurities on the spectrum and dynamical spin structure factor of a model for CuGeO3_3 is studied. A simple extension to Zn-doped SrCu2O3{\rm Sr Cu_2 O_3} is also discussed. Using Exact Diagonalization techniques and intuitive arguments we show that Zn-doping introduces states in the Spin-Peierls gap of CuGeO3_3. This effect can beunderstood easily in the large dimerization limit where doping by Zn creates ``loose'' S=1/2 spins, which interact with each other through very weak effective antiferromagnetic couplings. When the dimerization is small, a similar effect is observed but now with the free S=1/2 spins being the resulting S=1/2 ground state of severed chains with an odd number of sites. Experimental consequences of these results are discussed. It is interesting to observe that the spin correlations along the chains are enhanced by Zn-doping according to the numerical data presented here. As recent numerical calculations have shown, similar arguments apply to ladders with non-magnetic impurities simply replacing the tendency to dimerization in CuGeO3_3 by the tendency to form spin-singlets along the rungs in SrCu2_2O3_3.Comment: 7 pages, 8 postscript figures, revtex, addition of figure 8 and a section with experimental predictions, submmited to Phys. Rev. B in May 199

    Enhancement of Antiferromagnetic Correlations Induced by Nonmagnetic Impurities: Origin and Predictions for NMR Experiments

    Full text link
    Spin models that have been proposed to describe dimerized chains, ladders, two dimensional antiferromagnets, and other compounds are here studied when some spins are replaced by spinless vacancies, such as it occurs by ZnZn doping. A small percentage of vacancies rapidly destroys the spin gap, and their presence induces enhanced antiferromagnetic correlations near those vacancies. The study is performed with computational techniques which includes Lanczos, world-line Monte Carlo, and the Density Matrix Renormalization Group methods. Since the phenomenon of enhanced antiferromagnetism is found to occur in several models and cluster geometries, a common simple explanation for its presence may exist. It is argued that the resonating-valence-bond character of the spin correlations at short distances of a large variety of models is responsible for the presence of robust staggered spin correlations near vacancies and lattice edges. The phenomenon takes place regardless of the long distance properties of the ground state, and it is caused by a ``pruning'' of the available spin singlets in the vicinity of the vacancies. The effect produces a broadening of the low temperature NMR signal for the compounds analyzed here. This broadening should be experimentally observable in the structurally dimerized chain systems Cu(NO3)22.5H2OCu(NO_3)_2\cdot2.5H_2O, CuWO4CuWO_4, (VO)2P2O7(VO)_2P_2O_7, and Sr14Cu24O41Sr_{14}Cu_{24}O_{41}, in ladder materials such as SrCu2O3Sr Cu_2 O_3, in the spin-Peierls systems CuGeO3CuGeO_3 and NaV2O5NaV_2 O_5, and in several others since it is a universal effect common to a wide variety of models and compounds.Comment: 18 pages revtex with 26 figures include

    Teoria de ESR de momentos magnéticos diluídos e localizados em sólidos

    No full text
    Orientador: Gaston Eduardo BarberisTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb WataghinResumo: Não informadoAbstract: Not informed.DoutoradoFísicaDoutor em Ciência
    corecore