31 research outputs found

    Inhibin secretion in women with the polycystic ovary syndrome before and after treatment with progesterone

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>It has been suggested that inhibin secretion is altered in women with the polycystic ovary syndrome (PCOS). However, the contribution of a preceding luteal phase has not been taken into account. The aim of the present study was to investigate whether progesterone in the context of a simulated luteal phase affects basal and FSH-induced inhibin secretion in women with PCOS and elevated LH.</p> <p>Methods</p> <p>Ten women with PCOS and 8 normally cycling women participated in an experimental procedure (Exp) involving the administration of a single injection of recombinant FSH (450 IU sc). In the women with PCOS, the procedure was performed before (Exp 1) and after a 20-day treatment with progesterone (Exp 2), while in the normal women on day 2 of the cycle (Exp 3). Inhibin A and B levels were measured in blood samples taken before and 24 hours after the FSH injection.</p> <p>Results</p> <p>Basal LH levels were significantly higher and inhibin A levels were significantly lower in the PCOS group compared to the control group, while inhibin B levels were comparable in the two groups. In the PCOS group, after treatment with progesterone inhibin A and LH but not inhibin B levels decreased significantly (p < 0.05). After the FSH injection, inhibin A and B levels increased significantly in the women with PCOS (Exp 1 and Exp 2) but not in the control women (Exp 3).</p> <p>Conclusions</p> <p>In women with PCOS, as compared to control women, the dissimilar pattern of inhibin A and inhibin B secretion in response to FSH appears to be independent of a preceding simulated luteal phase. It is possible that compared to normal ovaries, the PCOS ovaries are less sensitive to endogenous LH regarding inhibin A secretion and more sensitive to exogenous FSH stimulation in terms of inhibin A and inhibin B secretion.</p

    The impact of sars-cov-2 on sperm cryostorage, theoretical or real risk?

    Get PDF
    Cryopreservation of human gametes and embryos as well as human reproductive tissues has been characterized as an essential process and aspect of assisted reproductive technology (ART). Notably, sperm cryopreservation is a fundamental aspect of cryopreservation in oncological patients or patients undergoing gonadotoxic treatment. Given that there is a risk of contamination or cross-contamination, either theoretical or real, during the procedures of cryopreservation and cryostorage, both the European Society for Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) have provided updated guidelines for preventing or reducing the contamination risk of sexually transmitted viruses. Given the ongoing and worldwide COVID-19 pandemic, there is considerable interest in what measures should be taken to mitigate SARS-CoV-2 contamination during cryopreservation and cryostorage of semen samples. The SARS-CoV-2 virus is the virus that causes COVID-19, and whose transmission and infection is mainly aerosol-mediated. Several ART professional societies, including ESHRE and ASRM have proposed measures to mitigate the spread of the SARS-CoV-2 virus. Whether the proposed safety directives are enough to mitigate the possible SARS-CoV-2-contamination of sperm samples during cryopreservation or whether the policies should be re-evaluated will be discussed in this review. Additionally, insights regarding the possible impact of COVID-19 vaccination on the safety of sperm cryopreservation will be discussed

    The Impact of SARS-CoV-2 on Sperm Cryostorage, Theoretical or Real Risk?

    No full text
    Cryopreservation of human gametes and embryos as well as human reproductive tissues has been characterized as an essential process and aspect of assisted reproductive technology (ART). Notably, sperm cryopreservation is a fundamental aspect of cryopreservation in oncological patients or patients undergoing gonadotoxic treatment. Given that there is a risk of contamination or cross-contamination, either theoretical or real, during the procedures of cryopreservation and cryostorage, both the European Society for Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) have provided updated guidelines for preventing or reducing the contamination risk of sexually transmitted viruses. Given the ongoing and worldwide COVID-19 pandemic, there is considerable interest in what measures should be taken to mitigate SARS-CoV-2 contamination during cryopreservation and cryostorage of semen samples. The SARS-CoV-2 virus is the virus that causes COVID-19, and whose transmission and infection is mainly aerosol-mediated. Several ART professional societies, including ESHRE and ASRM have proposed measures to mitigate the spread of the SARS-CoV-2 virus. Whether the proposed safety directives are enough to mitigate the possible SARS-CoV-2-contamination of sperm samples during cryopreservation or whether the policies should be re-evaluated will be discussed in this review. Additionally, insights regarding the possible impact of COVID-19 vaccination on the safety of sperm cryopreservation will be discussed

    Human Papilloma Virus (HPV) and Fertilization: A Mini Review

    No full text
    Human papilloma virus (HPV) is one of the most prevalent viral sexually transmitted diseases. The ability of HPV to induce malignancy in the anogenital tract and stomato-pharyngeal cavity is well documented. Moreover, HPV infection may also affect reproductive health and fertility. Although, the impact of HPV on female fertility has not been thoroughly studied it has been found also to have an impact on semen parameters. Relative information can be obtained from studies investigating the relationship between HPV and pregnancy success. Furthermore, there is an ongoing debate whether HPV alters the efficacy of assisted reproductive technologies. An association between HPV and assisted reproductive technologies (ART) programs has been reported. Nevertheless, due to conflicting data and the small number of existing studies further research is required. It remains to be clarified whether HPV detection and genotyping could be included in the diagnostic procedures in couples undergoing in vitro fertilization (IVF)/intrauterine insemination (IUI) treatments. Vaccination of both genders against HPV can reduce the prevalence of HPV infection and eliminate its implications on human fertility. The aim of the present mini-review is to reiterate the association between HPV and human fertility through a systematic literature review

    SARS-CoV-2 vs. human gametes, embryos and cryopreservation

    No full text
    The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is an unprecedented global situation, and all countries have adopted their own measurements to mitigate the spread of the virus in the first as well as in the subsequent waves of infection. All measures, especially in the first wave of the pandemic, were in combination with recommendations provided by professional and scientific organizations. Similar measures were applied to specific procedures, such as the management of infertility, including in vitro fertilization-embryo transfer (IVF-ET) treatments. Although there is no clear scientific evidence yet that the SARS-CoV-2 may exert negative effects on IVF outcome, especially at the early stages, several clinical reports indicate that the virus may impact male fertility through specific receptors presented at the somatic cells of the testis and used by the virus in order to gain entry to the respective cells. Nevertheless, it is not unreasonable to suspect that the virus may affect sperm function as well as oocyte performance directly through specific receptors or indirectly through other signaling pathways. Despite the good practice of IVF laboratory techniques, culture media may also be contaminated during equilibration when airborne virus&apos;s particles can contaminate culture media from an already infected embryology area or staff. Furthermore, although there is no clinical evidence, liquid nitrogen could be a route of infection for gametes and embryos when it has been contaminated during production or transportation. Therefore, cryopreservation of gametes and embryos must be virus-free. This communication aims to provide some aspects of the possible impact of the virus on gametes and embryos and how it may affect the cryopreservation procedures

    The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation

    No full text
    Glyphosate is the active ingredient of Roundup&reg;, which is one of the most popular herbicides worldwide. Although many studies have focused on the reproductive toxicity of glyphosate or glyphosate-based herbicides, the majority of them have concluded that the effect of the specific herbicide is negligible, while only a few studies indicate the male reproductive toxicity of glyphosate alone. The aim of the present study was to investigate the effect of 0.36 mg/L glyphosate on sperm motility and sperm DNA fragmentation (SDF). Thirty healthy men volunteered to undergo semen analysis for the purpose of the study. Sperm motility was calculated according to WHO 2010 guidelines at collection time (zero time) and 1 h post-treatment with glyphosate. Sperm DNA fragmentation was evaluated with Halosperm&reg; G2 kit for both the control and glyphosate-treated sperm samples. Sperm progressive motility of glyphosate-treated samples was significantly reduced after 1 h post-treatment in comparison to the respective controls, in contrast to the SDF of glyphosate-treated samples, which was comparable to the respective controls. Conclusively, under these in vitro conditions, at high concentrations that greatly exceed environmental exposures, glyphosate exerts toxic effects on sperm progressive motility but not on sperm DNA integrity, meaning that the toxic effect is limited only to motility, at least in the first hour

    Insights into the Role of Telomeres in Human Embryological Parameters. Opinions Regarding IVF

    No full text
    Telomeres promote genome integrity by protecting chromosome ends from the activation of the DNA damage response and protecting chromosomes from the loss of coding sequences due to the end replication problem. Telomere length (TL) is progressively shortened as age progresses, thus resulting in cellular senescence. Therefore, TL is in strong adverse linear correlation with aging. Mounting evidence supports the notion that telomeres and male/female infertility are in a close relationship, posing the biology of telomeres as a hot topic in the era of human-assisted reproduction. Specifically, the length of sperm telomeres is gradually increasing as men get older, while the telomere length of the oocytes seems not to follow similar patterns with that of sperm. Nonetheless, the telomere length of the embryos during the cleavage stages seems to have a paternal origin, but the telomere length can be further extended by telomerase activity during the blastocyst stage. The latter has been proposed as a new molecular biomarker with strong predictive value regarding male infertility. As far as the role of telomeres in assisted reproduction, the data is limited but the length of telomeres in both gametes seems to be affected mainly by the cause of infertility rather than the assisted reproductive therapy (ART) procedure itself. The present review aims to shed more light into the role of telomeres in human embryological parameters, including gametes and embryos and also presents opinions regarding the association between telomeres and in vitro fertilization (IVF)

    Insights into the Role of Telomeres in Human Embryological Parameters. Opinions Regarding IVF

    No full text
    Telomeres promote genome integrity by protecting chromosome ends from the activation of the DNA damage response and protecting chromosomes from the loss of coding sequences due to the end replication problem. Telomere length (TL) is progressively shortened as age progresses, thus resulting in cellular senescence. Therefore, TL is in strong adverse linear correlation with aging. Mounting evidence supports the notion that telomeres and male/female infertility are in a close relationship, posing the biology of telomeres as a hot topic in the era of human-assisted reproduction. Specifically, the length of sperm telomeres is gradually increasing as men get older, while the telomere length of the oocytes seems not to follow similar patterns with that of sperm. Nonetheless, the telomere length of the embryos during the cleavage stages seems to have a paternal origin, but the telomere length can be further extended by telomerase activity during the blastocyst stage. The latter has been proposed as a new molecular biomarker with strong predictive value regarding male infertility. As far as the role of telomeres in assisted reproduction, the data is limited but the length of telomeres in both gametes seems to be affected mainly by the cause of infertility rather than the assisted reproductive therapy (ART) procedure itself. The present review aims to shed more light into the role of telomeres in human embryological parameters, including gametes and embryos and also presents opinions regarding the association between telomeres and in vitro fertilization (IVF)

    Insights into the Role of Telomeres in Human Embryological Parameters. Opinions Regarding IVF

    No full text
    Telomeres promote genome integrity by protecting chromosome ends from the activation of the DNA damage response and protecting chromosomes from the loss of coding sequences due to the end replication problem. Telomere length (TL) is progressively shortened as age progresses, thus resulting in cellular senescence. Therefore, TL is in strong adverse linear correlation with aging. Mounting evidence supports the notion that telomeres and male/female infertility are in a close relationship, posing the biology of telomeres as a hot topic in the era of human-assisted reproduction. Specifically, the length of sperm telomeres is gradually increasing as men get older, while the telomere length of the oocytes seems not to follow similar patterns with that of sperm. Nonetheless, the telomere length of the embryos during the cleavage stages seems to have a paternal origin, but the telomere length can be further extended by telomerase activity during the blastocyst stage. The latter has been proposed as a new molecular biomarker with strong predictive value regarding male infertility. As far as the role of telomeres in assisted reproduction, the data is limited but the length of telomeres in both gametes seems to be affected mainly by the cause of infertility rather than the assisted reproductive therapy (ART) procedure itself. The present review aims to shed more light into the role of telomeres in human embryological parameters, including gametes and embryos and also presents opinions regarding the association between telomeres and in vitro fertilization (IVF)
    corecore