3,408 research outputs found

    Multisymplectic geometry, variational integrators, and nonlinear PDEs

    Full text link
    This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking the derivative of an action function, and use this structure to prove covariant generalizations of conservation of symplecticity and Noether's theorem. Natural discretization schemes for PDEs, which have these important preservation properties, then follow by choosing a discrete action functional. In the case of mechanics, we recover the variational symplectic integrators of Veselov type, while for PDEs we obtain covariant spacetime integrators which conserve the corresponding discrete multisymplectic form as well as the discrete momentum mappings corresponding to symmetries. We show that the usual notion of symplecticity along an infinite-dimensional space of fields can be naturally obtained by making a spacetime split. All of the aspects of our method are demonstrated with a nonlinear sine-Gordon equation, including computational results and a comparison with other discretization schemes.Comment: LaTeX2E, 52 pages, 11 figures, to appear in Comm. Math. Phy

    Ariel - Volume 9 Number 1

    Get PDF
    Executive Editor Emily Wofford Business Manager Fredric Jay Matlin University News John Patrick Welch World News George Robert Coar Editorial Editor Steve Levine Feature Brad Feldstein Mark Rubin Graphics Steve Hulkower Photo Rick Spaide Circulation Lee Wugofsk

    Nanoparticle forming polyelectrolyte complexes derived from well-defined block copolymers

    Get PDF
    Polymers can be used in nanoparticle associated formulations to encapsulate cytotoxic drugs (e.g., paclitaxel). Polyelectrolyte complexes (PECs) that form drug associated colloids also have potential to form particulate associated formulations. We used RAFT polymerisation to prepare small families of narrow molecular weight distributed (i) methacrylate block co-polymers comprised of oligomeric ethylene glycol, poly(ethylene glycol) methyl ether methacrylate (PEGMA), and dimethyl amino pendent chains, 2-(dimethylamino) ethyl methacrylate (DMAEMA), and (ii) poly(methacrylic acid), PMAA. These polymers were examined for their ability to form PECs capable of drug encapsulation. Optimal control in RAFT polymerisation was confirmed by the linear increase of molecular weight and the narrow dispersity of the polymers (<1.2) as determined by 1H nuclear magnetic resonance and gel permeation chromatography. Dynamic light scattering and transmission electron microscopy showed formation of well-defined monodispersed nanoparticles with a hydrodynamic diameter of 25 ± 3 nm upon self-assembly of poly(PEGMA0.23-b-DMAEMA0.77)99 and PMAA75. These PECs are highly haemocompatible. Thin film hydration was used to encapsulate two hydrophobic drugs, paclitaxel and carmofur, into spherical nanoparticles. The results show that carmofur was encapsulated markedly more effectively than paclitaxel (72 vs 1.5%)

    Chiminey: Reliable Computing and Data Management Platform in the Cloud

    Full text link
    The enabling of scientific experiments that are embarrassingly parallel, long running and data-intensive into a cloud-based execution environment is a desirable, though complex undertaking for many researchers. The management of such virtual environments is cumbersome and not necessarily within the core skill set for scientists and engineers. We present here Chiminey, a software platform that enables researchers to (i) run applications on both traditional high-performance computing and cloud-based computing infrastructures, (ii) handle failure during execution, (iii) curate and visualise execution outputs, (iv) share such data with collaborators or the public, and (v) search for publicly available data.Comment: Preprint, ICSE 201

    Human paraoxonase gene cluster polymorphisms as predictors of coronary heart disease risk in the prospective Northwick Park Heart Study II

    Get PDF
    AbstractThe anti-atherogenic effect of HDL has been suggested to be partly due to the action of HDL-associated paraoxonase (PON). Three distinct enzymes have been identified, encoded by PON1, PON2 and PON3, clustered on chromosome 7q21–q22. Two cSNPs in PON1 (L55M and Q192R) and one in PON2 (S311C) have been implicated as independent risk factors for coronary heart disease (CHD) in some, but not all, studies. A PON3 SNP (A99A) was identified and the effect of these four PON SNPs on HDL levels and CHD risk was examined in the prospective Northwick Park Heart Study II (NPHSII). Genotype frequencies did not differ between cases and controls but the CHD risk associated with smoking was significantly modified by PON1 L55M genotype. Compared to LL non-smokers, LL smokers had a hazard ratio (HR) of 1.30 (95% CI 0.81–2.06) while M-allele carriers had a HR of 1.76 (1.17–2.67). When genotypes were analysed in combination, men with the genotype PON1 55 LM/MM+PON2 311 CC, had HR of 3.54 (1.81–6.93) compared to PON1 LL+PON2 SS/SC men (interaction P=0.004). These effects were independent of classical risk factors. These data demonstrate the importance of stratifying by environmental factors and the use of multiple SNPs for genetic analysis

    Detection of a Fully-resolved Compton Shoulder of the Iron K-alpha Line in the Chandra X-ray Spectrum of GX 301-2

    Full text link
    We report the detection of a fully-resolved, Compton-scattered emission line in the X-ray spectrum of the massive binary GX 301-2 obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. The iron K-alpha fluorescence line complex observed in this system consists of an intense narrow component centered at an energy of E = 6.40 keV and a redward shoulder that extends down to ~6.24 keV, which corresponds to an energy shift of a Compton back-scattered iron K-alpha photon. From detailed Monte Carlo simulations and comparisons with the observed spectra, we are able to directly constrain the physical properties of the scattering medium, including the electron temperature and column density, as well as an estimate for the metal abundance.Comment: 13 pages, 4 figures, 1 table, accepted for publication in ApJ Lette
    • …
    corecore