14 research outputs found

    Red blood cell abnormalities and the pathogenesis of anemia in end-stage renal disease

    No full text
    Anemia is the most common hematologic complication in end-stage renal disease (ESRD). It is ascribed to decreased erythropoietin production, shortened red blood cell (RBC) lifespan, and inflammation. Uremic toxins severely affect RBC lifespan; however, the implicated molecular pathways are poorly understood. Moreover, current management of anemia in ESRD is controversial due to the “anemia paradox” phenomenon, which underlines the need for a more individualized approach to therapy. RBCs imprint the adverse effects of uremic, inflammatory, and oxidative stresses in a context of structural and functional deterioration that is associated with RBC removal signaling and morbidity risk. RBCs circulate in hostile plasma by raising elegant homeostatic defenses. Variability in primary defect, co-morbidity, and therapeutic approaches add complexity to the pathophysiological background of the anemic ESRD patient. Several blood components have been suggested as biomarkers of anemia-related morbidity and mortality risk in ESRD. However, a holistic view of blood cell and plasma modifications through integrated omics approaches and high-throughput studies might assist the development of new diagnostic tests and therapies that will target the underlying pathophysiologic processes of ESRD anemia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    The Multi-Faced Extracellular Vesicles in the Plasma of Chronic Kidney Disease Patients

    No full text
    Extracellular vesicles (EVs) are membrane-enclosed nanoparticles released by most cells in body fluids and extracellular matrix. They function as signal transducers in intercellular communication, contributing to the maintenance of cell and tissue integrity. EVs biogenesis is deregulated in various pathologies, in structural and functional connection to the pathophysiology of donor cells. Consequently, EVs are considered diagnostic and monitoring factors in many diseases. Despite consensus as to their activity in promoting coagulation and inflammation, there is evidence suggesting protective roles for EVs in stress states. Chronic kidney disease (CKD) patients are at high risk of developing cardiovascular defects. The pathophysiology, comorbidities, and treatment of CKD may individually and in synergy affect extracellular vesiculation in the kidney, endothelium, and blood cells. Oxidative and mechanical stresses, chronic inflammation, and deregulation of calcium and phosphate homeostasis are established stressors of EV release. EVs may affect the clinical severity of CKD by transferring biological response modifiers between renal, vascular, blood, and inflammatory cells. In this Review, we focus on EVs circulating in the plasma of CKD patients. We highlight some recent advances in the understanding of their biogenesis, the effects of dialysis, and pharmacological treatments on them and their potential impact on thrombosis and vascular defects. The strong interest of the scientific community to this exciting field of research may reveal hidden pieces in the pathophysiology of CKD and thus, innovative ways to treat it. Overcoming gaps in EV biology and technical difficulties related to their size and heterogeneity will define the success of the project. © Copyright © 2020 Georgatzakou, Pavlou, Papageorgiou, Papassideri, Kriebardis and Antonelou

    Microparticles variability in fresh frozen plasma: Preparation protocol and storage time effects

    No full text
    Background. Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Materials and methods. Fresh frozen plasma was prepared from platelet-rich plasma at 20 oC (Group-1 donors) or directly from whole blood at 4 oC (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 oC. Donors' haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Results. Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 oC did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. Discussion. The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 oC had no significant effect on the concentration of microparticles. © SIMTI Servizi Srl

    Short-term effects of hemodiafiltration versus conventional hemodialysis on erythrocyte performance

    No full text
    Hemodiafiltration (HDF) is a renal replacement therapy that is based on the principles of diffusion and convection for the elimination of uremic toxins. A significant and increasing number of end-stage renal disease (ESRD) patients are treated with HDF, even in the absence of definite and conclusive survival and anemia treatment data. However, its effects on red blood cell (RBC) physiological features have not been examined in depth. In this study, ESRD patients under regular HDF or conventional hemodialysis (cHD) treatment were examined for RBC-related parameters, including anemia, hemolysis, cell shape, redox status, removal signaling, membrane protein composition, and microvesiculation, in repeated paired measurements accomplished before and right after each dialysis session. The HDF group was characterized by better redox potential and suppressed exovesiculation of blood cells compared with the cHD group pre-dialysis. However, HDF was associated with a temporary but acute, oxidative-stress-driven increase in hemolysis, RBC removal signaling, and stomatocytosis, probably associated with the effective clearance of dialyzable natural antioxidant components, including uric acid, from the uremic plasma. The nature of these adverse short-term effects of HDF on post-dialysis plasma and RBCs strongly suggests the use of a parallel antioxidant therapy during the HDF session. © 2018, Published by NRC Research Press

    Redox status, procoagulant activity, and metabolome of fresh frozen plasma in glucose 6-phosphate dehydrogenase deficiency

    No full text
    Objective: Transfusion of fresh frozen plasma (FFP) helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs), numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc.) are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD-), the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD- cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD- males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels. Methods: The quality of n = 12 G6PD- and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools. Results: Higher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD- FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD-. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD- FFPs compared with control. Conclusion: Our results point toward a different redox, lipid metabolism, and EV profile in the G6PD- FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD- FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD-, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies. © 2018 Tzounakas, Gevi, Georgatzakou, Zolla, Papassideri, Kriebardis, Rinalducci and Antonelou

    Recipient's effects on stored red blood cell performance: the case of uremic plasma

    No full text
    BACKGROUND: Despite universal administration of erythropoiesis-stimulating agents, patients with end-stage renal disease (ESRD) are at high risk for presenting persistent anemia. Due to ambiguities in optimal hemoglobin targets and evidence of recombinant human erythropoietin (EPO)-related toxicity, an increase in blood transfusions has been observed in chronic renal disease over the past years. The probable effects of uremic plasma on the performance of stored red blood cells (RBCs) after transfusion have not been investigated. STUDY DESIGN AND METHODS: Leukoreduced RBCs after short or long storage in CPD-SAGM (n = 5) were assessed for hemolysis, surface removal signaling, reactive oxygen species (ROS) accumulation, and shape distortions before and after reconstitution with healthy (n = 10) or uremic plasma from ESRD patients (n = 20) for 24 hours at physiologic temperature, by using a previously reported in vitro model of transfusion. RESULTS: Temperature and cell environment shifts from blood bag to plasma independently and in synergy affected the RBC physiology. Outcome measures at transfusion-simulating conditions might not be analogous to timing of storage lesion. The uremic plasma ameliorated the susceptibility of stored RBCs to hemolysis, phosphatidylserine externalization, and ROS generation after stimulation by oxidants, but negatively affected shape homeostasis versus healthy plasma. Creatinine, uric acid, and EPO levels had correlations with the performance of stored RBCs in ESRD plasma. CONCLUSION: Renal insufficiency and EPO supplementation likely affect the recovery of donor RBCs and the reactivity of RBCs after transfusion by exerting both toxic and cytoprotective influences on them. ESRD patients constitute a specific recipient group that deserves further examination. © 2019 AAB

    Uric acid variation among regular blood donors is indicative of red blood cell susceptibility to storage lesion markers: A new hypothesis tested

    No full text
    BACKGROUND Oxidative stress orchestrates a significant part of the red blood cell (RBC) storage lesion. Considering the tremendous interdonor variability observed in the "storability," namely, the capacity of RBCs to sustain the storage lesion, this study aimed at the elucidation of donor-specific factors that affect the redox homeostasis during the storage of RBCs in standard systems. STUDY DESIGN AND METHODS The hematologic profile of regular blood donors (n = 78) was evaluated by biochemical analysis of 48 different variables, including in vivo hemolysis and plasma oxidant and antioxidant factors and statistical analysis of the results. The possible effect of the uric acid (UA) variable on RBC storability was investigated in leukoreduced CPD/SAGM RBC units (n = 8) collected from donors exhibiting high or low prestorage levels of UA, throughout the storage period. RESULTS Among the hematologic variables examined in vivo, cluster analysis grouped the donors according to their serum UA levels. Plasma antioxidant capacity, iron indexes, and protein carbonylation represented covariants of UA factor. RBCs prepared by low- or high-UA donors exhibited significant differences between them in spheroechinocytosis, supernatant antioxidant activity, and other RBC storage lesion-associated variables. CONCLUSION UA exhibits a storability biomarker potential. Intrinsic variability in plasma UA levels might be related to the interdonor variability observed in the storage capacity of RBCs. A model for the antioxidant effect of UA during the RBC storage is currently proposed. © 2015 AABB

    Pathophysiological aspects of red blood cells in end-stage renal disease patients resistant to recombinant human erythropoietin therapy

    No full text
    Objective: Modified, bioreactive red blood cells (RBCs) and RBC-derived microvesicles (MVs) likely contribute to the hematological and cardiovascular complications in end-stage renal disease (ESRD). This study assesses the physiological profile of RBCs in patients with ESRD receiving standard or high doses of recombinant human erythropoietin (rhEPO). Method: Blood samples from twenty-eight patients under sustained hemodialysis, responsive, or not to standard rhEPO administration were examined for RBC morphology, fragility, hemolysis, redox status, removal signaling, membrane protein composition, and microvesiculation before and after dialysis. Acute effects of uremic plasma on RBC features were examined in vitro through reconstitution experiments. Results: Overall, the ESRD RBCs were characterized by pathological levels of shape distortions, surface removal signaling, and membrane exovesiculation, but reduced fragility compared to healthy RBCs. Irreversible transformation of RBCs was found to be a function of baseline Hb concentration. The more toxic uremic context in non-responsive patients compared to rhEPO responders was blunted in part by the antioxidant, antihemolytic, and anti-apoptotic effects of high rhEPO doses, and probably, of serum uric acid. A selective lower expression of RBC membrane in complement regulators (CD59, clusterin) and of CD47 “marker-of-self” was detected in non-responders and responders, respectively. Evidence for different short-term dialysis effects and probably for a different erythrocyte vesiculation mechanism in rhEPO responsive compared to non-responsive patients was also revealed. Conclusion: Deregulation of RBC homeostasis might involve diverse molecular pathways driving erythrocyte signaling and removal in rhEPO non-responders compared to responsive patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Lt

    Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors

    No full text
    This article contains data on the variation in several physiological parameters of red blood cells (RBCs) donated by eligible glucose-6-phosphate dehydrogenase (G6PD) deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD+) cells. Intracellular reactive oxygen species (ROS) generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in "Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells" [1]. © 2016 The Authors
    corecore