18 research outputs found

    Annals of Solid and Structural Mechanics

    Get PDF
    In this paper, the effects of a breathing crack on the vibratory characteris- tics of a rotating shaft are investigated. A new, simple and robust model composed of two rigid bars connected with a nonlinear flexural spring is proposed. The nonlinear spring, located at the cracked transverse section position, concentrates the global stiff- ness of the cracked shaft. The breathing mechanism of the crack is described by a more realistic periodic variation of the global stiffness depending not only but substantially on the system vibratory response. It is based on an energy formulation of the problem of 3D elasticity with unilateral contact conditions on the crack lips. A possible partial opening and closing of the crack is considered which makes the approach more appro- priate for deep cracks modeling. The harmonic balance method, direct time-integration schemes and nonlinear dynamics tools are used to characterize the global dynamics of the system. The effects of the crack depth and rotating frequency have been metic- ulously examined and it was found that the cracked shaft never exhibits chaotic or quasi-periodic vibratory response

    Mechanical Behavior of Carbon Nanotube-Reinforced Polymer Composites

    No full text
    Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nm, or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials [1–3]
    corecore