17 research outputs found

    Evolution of small-scale flow barriers in German Rotliegend siliciclastics

    Get PDF
    Many siliciclastic reservoirs contain millimetre-scale diagenetic and structural phenomena affecting fluid flow. We identified three major types of small-scale flow barriers in a clastic Rotliegend hydrocarbon reservoir: cataclastic deformation bands; dissolution seams; and bedding-parallel cementation. Deformation bands of various orientations were analysed on resistivity image logs and in core material. They are mainly conjugates, and can be used to validate seismically observable faults and infer subseismic faults. Bedding-parallel dissolution seams are related to compaction and post-date at least one set of deformation bands. Bedding-parallel cementation is accumulated in coarser-grained layers and depends on the amount of clay coatings. Apparent permeability data related to petrographical image interpretation visualizes the impact of flow barriers on reservoir heterogeneity. Transmissibility multiplier calculations indicate the small efficiency of the studied deformation bands on flow properties in the reservoir. Deformation bands reduce the host-rock permeability by a maximum of two orders of magnitude. However, host-rock anisotropies are inferred to reduce the permeability by a maximum of four orders of magnitude. The relative timing of these flow barriers, as well as the assessment of reservoir heterogeneities, are the basis for state-of-the-art reservoir prediction modelling

    Melt fraction, distribution and interconnection determined by electrical conductivity (EC) and energy dispersive X-ray diffraction (EDX) measurements

    No full text
    This study deals with the in-situ detection of volume fractions of melt in labradorite and basalt at 0.3 GPa pressure and temperatures ranging from 400–1500 °C. Methods used were frequency dependent electrical conductivity (EC) and energy dispersive X-ray diffraction (EDX). These techniques allowed melt fraction determination under in-situ pressure and temperature conditions, while optical analysis (SEM) was performed on quenched samples. EC allowed detecting melt frac- tions as low as 0.03 due to changes in dielectric properties. Increasing melt fractions caused the formerly isolated melt bubbles to interconnect along grain boundaries, thus increasing the bulk conductivity. Electrical conductivity thus provides a measure for both, the formation of melt (dielectric property) and the degree of interconnection of melt (bulk conductivity). Energy dispersive X-ray diffraction experiments (EDX) provided an additional measure for the volume fraction of melt. EDX diffraction data were used to calculate the volume fraction of melt on the basis of the peak to background ratio. In a final step the experimental data (SEM, EC, EDX) were compared with geometric models of melt distribution, namely the Archie-, cube-, tube-, Hashin-Shtrikman HS + and HS - model. The electrical "polarisability" data closely fit the HS + model, while bulk conductivity data were found to be less sensitive for melt fraction detection

    Chemical-mechanical coupling observed for depleted oil reservoirs subjected to long-term CO2-exposure - A case study of the Werkendam natural CO2 analogue field

    No full text
    Geological storage of CO2 is one of the most promising technologies to rapidly reduce anthropogenic emissions of carbon dioxide. In order to ensure storage integrity, it is important to understand the effect of long-term CO2/brine/rock interactions on the mechanical behaviour of a storage complex. As most of these reactions are too slow to reproduce on laboratory timescales, we studied a natural CO2 analogue reservoir (the Röt Fringe Sandstone, Werkendam field, the Netherlands; 125-135 Ma of CO2-exposure) and its unreacted counterpart. We focused on CO2-induced mineralogical and porosity-permeability changes, and their effect on mechanical behaviour of both intact rock and simulated fault gouge. Overall, CO2-exposure did not lead to drastic mineralogical changes. The CO2-exposed material shows a stronger dependence of permeability on porosity, which is attributed to differences in diagenesis (closed-system diagenesis and hydrocarbon emplacement) taking place before CO2 charging. The limited extent of reaction was in part the result of bitumen coatings protecting specific mineral phases from reaction. In local, mm-sized zones displaying significant anhydrite cement dissolution, enhanced porosity was observed. For most of the reservoir the long-term mechanical behaviour after CO2-exposure could be described by the behaviour of the unreacted sandstone, while these more 'porous' zones had a lower rock strength. In addition, CO2-exposure did not affect the fault friction behaviour, and slip is expected to result in stable sliding. Simple stress path calculations predict that reservoir failure due to depletion and injection is unlikely, even for the 'porous' zones, nor will fault reactivation occur for realistic injection scenarios

    Transport processes

    No full text
    corecore