40 research outputs found
A two-year participatory intervention project with owners to reduce lameness and limb abnormalities in working horses in Jaipur, India
Participatory methods are increasingly used in international human development, but scientific evaluation of their efficacy versus a control group is rare. Working horses support families in impoverished communities. Lameness and limb abnormalities are highly prevalent in these animals and a cause for welfare concern. We aimed to stimulate and evaluate improvements in lameness and limb abnormalities in horses whose owners took part in a 2-year participatory intervention project to reduce lameness (PI) versus a control group (C) in Jaipur, India.In total, 439 owners of 862 horses participated in the study. PI group owners from 21 communities were encouraged to meet regularly to discuss management and work practices influencing lameness and poor welfare and to track their own progress in improving these. Lameness examinations (41 parameters) were conducted at the start of the study (Baseline), and after 1 year and 2 years. Results were compared with control horses from a further 21 communities outside the intervention. Of the 149 horses assessed on all three occasions, PI horses showed significantly (P<0.05) greater improvement than C horses in 20 parameters, most notably overall lameness score, measures of sole pain and range of movement on limb flexion. Control horses showed slight but significantly greater improvements in four parameters, including frog quality in fore and hindlimbs.This participatory intervention succeeded in improving lameness and some limb abnormalities in working horses, by encouraging changes in management and work practices which were feasible within owners’ socioeconomic and environmental constraints. Demonstration of the potentially sustainable improvements achieved here should encourage further development of participatory intervention approaches to benefit humans and animals in other contexts
Equine dietary supplements:an insight into their use and perceptions in the Irish equine industry
Background:
Nutritional supplements are frequently used by horse owners/caregivers to supplement their horse(s) diets. Some work has been done to identify the types of supplements fed and the reasons for doing so; however, this has been predominantly disciple-specific and with little focus on participants’ perceptions of supplement testing and regulation. The aim of this study was to gain an insight into the use and perceptions of equine dietary supplements in the Irish equestrian industry.
Methods:
An online survey was designed to ascertain the following information: demographics, types of supplements fed and reasons for use, factors that influenced respondents’ choice of supplement, where advice was sought and perceptions of testing and regulation of equine supplements
Results:
The survey yielded 134 responses, 70% non-professionals and 30% professionals. A greater percentage of professionals included supplements in their horse(s) diets (98%) compared to non-professionals (86%). Almost 70% of professionals fed more than two supplements, whereas 80% of non-professionals reported to feed only one supplement. Joint supplements were most commonly fed by all respondents (22%) followed by calming supplements (13%). The enhancement of performance (35%) and prevention of joint disorders (34%) were the most common reasons reported by respondents for using a supplement. Over 53% of respondents sought advice on choosing a supplement from their feed merchant, followed by their veterinarian (46%). Veterinary recommendation was given as the most influential factor when choosing a supplement by 90% of respondents, followed by cost (69%). Most (93%) respondents thought that feed supplements had to meet legal standards, with each batch analysed for quality (72%) and the supplement tested on horses before being launched on to the market (92%).
Conclusion:
This study has identified the main types of supplements used in the Irish equestrian industry along with the reasons for their use. However, it has also highlighted major misperceptions in how supplements are tested before being launched for sale and further work on this aspect of the findings would be beneficial
A Genome Scan for Positive Selection in Thoroughbred Horses
Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1) deviations from expected heterozygosity (Ewens-Watterson test) in Thoroughbred (n = 112) and (2) global differentiation among four geographically diverse horse populations (FST). We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01), insulin receptor signalling (5.0-fold enrichment; P<0.01) and lipid transport (2.2-fold enrichment; P<0.05) genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05) and focal adhesion pathway (1.9-fold enrichment; P<0.01) genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1), ACTA1 (actin, alpha 1, skeletal muscle), ACTN2 (actinin, alpha 2), ADHFE1 (alcohol dehydrogenase, iron containing, 1), MTFR1 (mitochondrial fission regulator 1), PDK4 (pyruvate dehydrogenase kinase, isozyme 4) and TNC (tenascin C). Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes within the complex molecular networks underlying obesity and its consequential pathologies, such as type 2 diabetes. Therefore, we propose Thoroughbred as a novel in vivo large animal model for understanding molecular protection against metabolic disease
Identification of modifiable factors associated with owner-reported equine laminitis in Britain using a web-based cohort study approach
Equine laminitis is a complex disease that manifests as pain and lameness in the feet, often with debilitating consequences. There is a paucity of data that accounts for the multifactorial nature of laminitis and considers time-varying covariates that may be associated with disease development; particularly those that are modifiable and present potential interventions. A previous case-control study identified a number of novel, modifiable factors associated with laminitis which warranted further investigation and corroboration. The aim of this study was to identify factors associated with equine laminitis in horses/ponies in Great Britain (GB) using a prospective, web-based cohort study design, with particular interest in evaluating modifiable factors previously identified in the case-control study