112 research outputs found

    Growth of Highly Doped P-Type Znte Films by Pulsed Laser ablation in Molecular Nitrogen

    Get PDF
    Highly p-doped ZnTe films have been grown on semi-insulating GaAs (001) substrates by pulsed-laser ablation (PLA) of a stoichiometric ZnTe target in a high-purity N{sub 2} ambient without the use of any assisting (DC or AC) plasma source. Free hole concentrations in the mid-10{sup 19} cm{sup {minus}3} to > 10{sup 20} cm{sup {minus}3} range were obtained for a range of nitrogen pressures The maximum hole concentration equals the highest hole doping reported to date for any wide band gap II-VI compound. The highest hole mobilities were attained for nitrogen pressures of 50--100 mTorr ({approximately}6.5-13 Pa). Unlike recent experiments in which atomic nitrogen beams, extracted from RF and DC plasma sources, were used to produce p-type doping during molecular beam epitaxy deposition, spectroscopic measurements carried out during PLA of ZnTe in N{sub 2} do not reveal the presence of atomic nitrogen. This suggests that the high hole concentrations in laser ablated ZnTe are produced by a new and different mechanism, possibly energetic beam-induced reactions with excited molecular nitrogen adsorbed on the growing film surface, or transient formation of Zn-N complexes in the energetic ablation plume. This appears to be the first time that any wide band gap (Eg > 2 eV) II-VI compound (or other) semiconductor has been impurity-doped from the gas phase by laser ablation. In combination with the recent discovery that epitaxial ZnSe{sub l-x}S{sub x} films and heterostructures with continuously variable composition can be grown by ablation from a single target of fixed composition, these results appear to open the way to explore PLA growth and doping of compound semiconductors as a possible alternative to molecular beam epitaxy

    Recent advances in pulsed-laser deposition of complex-oxides

    Full text link
    Pulsed-laser deposition (PLD) is one of the most promising techniques for the formation of complex-oxide heterostructures, superlattices, and well-controlled interfaces. The first part of this paper presents a review of several useful modifications of the process, including methods inspired by combinatorial approaches. We then discuss detailed growth kinetics results, which illustrate that 'true' layer-by-layer (LBL) growth can only be approached, but not fully met, even though many characterization techniques reveal interfaces with unexpected sharpness. Time-resolved surface x-ray diffraction measurements show that crystallization and the majority of interlayer mass transport occur on time scales that are comparable to those of the plume/substrate interaction, providing direct experimental evidence that a growth regime exists in which non-thermal processes dominate PLD. This understanding shows how kinetic growth manipulation can bring PLD closer to ideal LBL than any other growth method available today.Comment: 37 pages, 9 figures. Revie
    • …
    corecore