21 research outputs found

    Fixed-bearing Medial Unicompartmental Knee Arthroplasty Restores Neither the Medial Pivoting Behavior Nor the Ligament Forces of the Intact Knee in Passive Flexion

    Get PDF
    Medial unicompartmental knee arthroplasty (UKA) is an accepted treatment for isolated medial osteoarthritis. However, using an improper thickness for the tibial component may contribute to early failure of the prosthesis or disease progression in the unreplaced lateral compartment. Little is known of the effect of insert thickness on both knee kinematics and ligament forces. Therefore, a computational model of the tibiofemoral joint was used to determine how non-conforming, fixed bearing medial UKA affects tibiofemoral kinematics and tension in the medial collateral ligament (MCL) and the anterior cruciate ligament (ACL) during passive knee flexion. Fixed bearing medial UKA could not maintain the medial pivoting that occurred in the intact knee from 0° to 30° of passive flexion. Abnormal anterior-posterior (AP) translations of the femoral condyles relative to the tibia delayed coupled internal tibial rotation, which occurred in the intact knee from 0° to 30° flexion, but occurred from 30° to 90° flexion following UKA. Increasing or decreasing tibial insert thickness following medial UKA also failed to restore the medial pivoting behavior of the intact knee despite modulating MCL and ACL forces. Reduced AP constraint in non-conforming medial UKA relative to the intact knee leads to abnormal condylar translations regardless of insert thickness even with intact cruciate and collateral ligaments. This finding suggests that the conformity of the medial compartment as driven by the medial meniscus and articular morphology plays an important role in controlling AP condylar translations in the intact tibiofemoral joint during passive flexion

    The effect of constraint on post damage in total knee arthroplasty: posterior stabilized vs posterior stabilized constrained inserts

    No full text
    Posterior stabilized constrained (PSC) inserts are intended to provide greater varus-valgus and rotational constraint than conventional PS inserts. We determined whether the added constraint resulted in more damage to the post in PSC compared to PS inserts. Retrieved PSC inserts were matched to retrieved PS inserts from the same manufacturer according to patient age, body mass index, and length of implantation. Surface damage was visually assessed, and 3-D surface deviation from pristine was measured. Damage scores for the PSC posts were significantly greater than those of the PS posts. Surface deviation was significantly greater in the posterior and medial post regions of the PSC inserts. Based on short-term follow-up, our results suggest that added constraint is accompanied by greater polyethylene surface damage

    High Stress Conditions Do Not Increase Wear of Thin Highly Crosslinked UHMWPE

    No full text
    Introduction of highly crosslinked polyethylene has increased interest in large femoral heads, because thin acetabular liners can be used while maintaining low wear rates and larger heads decrease the incidence of instability. However, crosslinking and subsequent thermal treatments can cause decreased mechanical properties that might obviate the reduced wear under extreme conditions. To examine whether increased contact pressures would adversely affect wear in thin liners, we tested thin and thick highly crosslinked liners (3.8 mm thickness/44-mm head and 7.9 mm thickness/36-mm head, respectively) to 5 million cycles on a hip simulator under near impingement conditions. Conventional polyethylene liners (7.9 mm thickness/36-mm head) served as controls. Large femoral heads with highly crosslinked polyethylene liners as thin as 3.8 mm in thickness do not wear at a higher rate than a thicker liner of the same material, even when subjected to large contact pressures such as occur under near-impingement conditions. Crosslinked polyethylene may allow for liners that are thinner than has been traditionally accepted. This conclusion, however, is based solely on wear test results with idealized cup position, no intentional edge loading, no head subluxation, and no artificial aging. Continued monitoring will be necessary to elucidate the clinical efficacy of these devices

    Assessment of Damage on a Dual Mobility Acetabular System

    No full text
    Background: Dual mobility designs were introduced to increase stability and reduce the risk of dislocation, both being common reasons for surgical revision after total hip arthroplasty. The in vivo behavior of dual mobility constructs remains unclear, and to our knowledge, no data have been published describing in vivo surface damage to the polyethylene bearing surfaces. Methods: We used surface damage assessed on the inner and outer polyethylene bearing surfaces in 33 short-term retrieved dual mobility liners as evidence of relative motion at the 2 bearings. A lever out test was performed to determine the force required for dislocation of the cobalt-chromium femoral head from the polyethylene liner. Results: Both bearings showed damage; however, the inner polyethylene bearings had higher damage scores, lower prevalence of remaining machining marks, and higher incidence of concentric wear, all consistent with more motion at the inner polyethylene bearing. The inner polyethylene bearings also had a higher occurrence of embedded titanium debris. The damage sustained in vivo was insufficient to lead to intraprosthetic dislocation in any of the retrieved components. Lever out tests of 12 retrievals had a mean dislocation load of 261 +/- 52 N, which was unrelated to the length of implantation. Conclusion: Our short-term retrieval data of 33 highly cross-linked polyethylene dual mobility components suggest that although motion occurs at both bearing articulations, the motion of the femoral head against the inner polyethylene bearing dominates. Although damage was not severe enough to lead to intraprosthetic dislocation, failure may occur long term and should be assessed in future studies. (C) 2016 Elsevier Inc. All rights reserved

    Lack of Early Dislocation following Total Hip Arthroplasty with a New Dual Mobility Acetabular Design

    No full text
    Dual mobility implant designs minimise the risk of dislocation without sacrificing range of motion. Between 1st September 2008 and 31st July 2011, 5 institutions examined early clinical outcomes of a new dual mobility bearing hip system implanted in 485 primary THAs in 452 patients. Patient demographics were 46% female, a mean age of 67 years and a mean BMI of 30. Complications at a minimum of 2 years after surgery included 1 femur fracture, 1 DVT and 4 unrelated deaths. There were no dislocations. For functional outcomes, Harris Hip Scores increased from 41 to 86 (p<0.001), while VAS pain scores decreased from 5.9 to 0.7 (p<0.001). Minimal complications, excellent early clinical outcomes and the absence of early dislocations demonstrate the improved stability of this dual mobility implant system

    Posterior-stabilized versus mid-level constraint polyethylene components in total knee arthroplasty: a biomechanical cadaveric analysis of laxity and collateral ligament forces

    No full text
    Aims: Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model. Methods: We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition. Results: Mid-level inserts reduced varus angulations compared to PS inserts by a median of 0.4°, 0.9°, and 1.5° at 0°, 30°, and 90° of flexion, respectively, and reduced valgus angulations by a median of 0.3°, 1.0°, and 1.2° (p ≤ 0.027 for all comparisons). Mid-level inserts reduced net IE rotations by a median of 5.6°, 14.7°, and 17.5° at 0°, 30°, and 90°, respectively (p = 0.012). Mid-level inserts reduced anterior tibial translation only at 90° of flexion by a median of 3.0 millimetres (p = 0.036). With an applied varus moment, the mid-level insert decreased LCL force compared to the PS insert at all three flexion angles that were tested (p ≤ 0.036). In contrast, with a valgus moment the mid-level insert did not reduce MCL force. With an applied internal rotation moment, the mid-level insert decreased LCL force at 30° and 90° by a median of 25.7 N and 31.7 N, respectively (p = 0.017 and p = 0.012). With an external rotation moment, the mid-level insert decreased MCL force at 30° and 90° by a median of 45.7 N and 20.0 N, respectively (p ≤ 0.017 for all comparisons). With an applied anterior load, MCL and LCL forces showed no differences between the two inserts at 30° and 90° of flexion. Conclusion: The mid-level insert used in this study decreased coronal and axial plane laxities compared to the PS insert, but its stabilizing benefit in the sagittal plane was limited. Both mid-level and PS inserts depended on the MCL to resist anterior loads during a simulated clinical exam of anterior laxity. Cite this article: Bone Jt Open 2023;4(6):432–441
    corecore