281 research outputs found
Reviews
Technologyâbased Learning Environments: Psychological and Educational Foundations edited by S. Vosniadou, E. De Corte and H. Mandl, volume 137 in NATO ASI Series F (Computer and Systems Sciences), Berlin, SpringerâVerlag, ISBN: 0â387â58253â3, 1994
Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations
Multifragmented proximal humeral fractures frequently require operative fixation. The locking plates commonly used are often placed relative to the greater tuberosity, however no quantitative data exists regarding the effect of positional changes. The aim of the study was to establish the effects from variations in proximalâdistal PHILOS humeral plate positioning on predicted fixation failure risk. Twentyâone leftâsided lowâdensity virtual humeri models were created with a simulation framework from CT data of elderly donors and osteotomized to mimic an unstable threeâpart malreduced AO/OTA 11âB3.2 fracture with medial comminution. A PHILOS plate with either four or six proximal screws was used for fixation. Both configurations were modelled with plate repositioning 2 and 4âmm distally and proximally to its baseline position. Applying a validated computational model, three physiological loading situations were simulated and fixation failure predicted using average strain around the proximal screws â an outcome established as a surrogate for cycles to failure. Varying the craniocaudal plate position affected the periâimplant strain for both four and sixâscrew configurations. Even though significant changes were seen only in the latter, all tests suggested that more proximal plate positioning results in decreased periâscrew strains whereas distalizing creates increases in strain. These results suggest that even a small distal PHILOS plate malpositioning may reduce fixation stability. Plate distalization increases the probability of being unable to insert all screws within the humeral head, which dramatically increases the forces acting on the remaining screws. Proximal plate shifting may be beneficial, especially for constructs employing calcar screws.This article is protected by copyright. All rights reserve
Screw configuration in proximal humerus plating has a significant impact on fixation failure risk predicted by finite element models
Background: Proximal humeral fractures occur frequently, with fixed angle locking plates often being used for their treatment. No current quantitative evidence for the effect of different screw configurations exists, and the large number of variations makes biomechanical testing prohibitive. Therefore, we used an established and validated finite element osteosynthesis test kit to quantify the effect of variations in screw configuration on predicted failure risk of PHILOS plate fixation for unstable proximal humerus fractures. Methods: Twenty-six low-density humerus models were osteotomized to create malreduced unstable 3-part fractures that were virtually fixed with PHILOS plates. Twelve screw configurations were simulated: 6 using 2 screw rows, 4 using 3 rows, and 1 with either 8 or 9 screws. Three physiological loading cases were modeled and an established finite element analysis methodology was used. The average peri-screw bone strain, previously demonstrated to predict fatigue cutout failure, was used to compare the different configurations. Results: Significant differences in peri-screw strains, and thus predicted failure risk, were seen with different combinations. The 9-screw configuration demonstrated the lowest peri-screw strains. Fewer screw constructs showed lower strains when placed further apart. The calcar screws (row E) significantly (P < .001) reduced fixation failure risk. Conclusion: Screw configurations significantly impact predicted cutout failure risk for locking plate fixations of unstable proximal humerus fractures in low-density bone. Although requiring clinical corroboration, the result of this study suggests that additional screws reduce peri-screw strains, the distance between them should be maximized whenever possible and the calcar screws should be used.</p
Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations
Multifragmented proximal humeral fractures frequently require operative fixation. The locking plates commonly used are often placed relative to the greater tuberosity, however no quantitative data exists regarding the effect of positional changes. The aim of the study was to establish the effects from variations in proximalâdistal PHILOS humeral plate positioning on predicted fixation failure risk. Twentyâone leftâsided lowâdensity virtual humeri models were created with a simulation framework from CT data of elderly donors and osteotomized to mimic an unstable threeâpart malreduced AO/OTA 11âB3.2 fracture with medial comminution. A PHILOS plate with either four or six proximal screws was used for fixation. Both configurations were modelled with plate repositioning 2 and 4âmm distally and proximally to its baseline position. Applying a validated computational model, three physiological loading situations were simulated and fixation failure predicted using average strain around the proximal screws â an outcome established as a surrogate for cycles to failure. Varying the craniocaudal plate position affected the periâimplant strain for both four and sixâscrew configurations. Even though significant changes were seen only in the latter, all tests suggested that more proximal plate positioning results in decreased periâscrew strains whereas distalizing creates increases in strain. These results suggest that even a small distal PHILOS plate malpositioning may reduce fixation stability. Plate distalization increases the probability of being unable to insert all screws within the humeral head, which dramatically increases the forces acting on the remaining screws. Proximal plate shifting may be beneficial, especially for constructs employing calcar screws.This article is protected by copyright. All rights reserve
The influence of screw length on predicted cut-out failures for proximal humeral fracture fixations predicted by finite element simulations
Background: The aim of this study was to identify the effect of screw length on predictions of fixation failure in three-part proximal humeral fractures using a finite element-based osteosynthesis modelling toolkit. Methods: A mal-reduced unstable three-part AO/OTA 11-B3.2 fracture with medial comminution was simulated in forty-two digitally processed proximal humeri covering a spectrum of bone densities and fixed with the PHILOS plate using three distal and six proximal locking screws. Four test groups were generated based on the screw tip to joint surface distance (TJD), with all proximal screws being shortened from 4Â mm TJD to be 8, 12 or 16Â mm TJD. Average bone strains around the screw tips, correlating with biomechanical cyclic cut-out-type failure, were evaluated in three physiological loading protocols representing simple shoulder motions. Six further groups were tested, where five of the proximal screws were inserted to 4Â mm TJD and the sixth screw to 8Â mm TJD. Results: Exponential increases in the predicted risk of fixation failure were seen with increased tip-to-joint distances (p < 0.001). When one of the proximal screws was placed 8Â mm from the joint, with the remaining five at 4Â mm distance, significant increases (p < 0.001) were registered in the strains around the screw tips in all except the two superior screws. This effect was maximal around the calcar screws (p < 0.001) and for lower density samples (p < 0.001). Conclusions: These results suggest that longer screws provide reduced risk of cut-out failure, i.e. distalisation and/or varisation of the head fragment, and thus may decrease failure rates in proximal humeral fractures treated with angular stable plates. These findings require clinical corroboration and further studies to investigate the risk of screw perforation.</p
Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals Significantly Reduced Bone Stock in the Metaphyseal and Subcapital Regions of Osteoporotic Individuals
Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred. The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals. The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis. At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side. This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus
A rapid method for the generation of uniform acellular bone explants: a technical note
<p>Abstract</p> <p>Background</p> <p>Bone graft studies lack standardized controls. We aim to present a quick and reliable method for the intra-operative generation of acellular bone explants.</p> <p>Methods</p> <p>Therefore, ovine cancellous bone explants from the iliac crest were prepared and used to test several methods for the induction of cell death. Over night heat inactivation was used as positive treatment control, methods to be investigated included UV light, or X- ray exposure, incubation in a hypotonic solution (salt-free water) and a short cycle of repeated freezing and thawing.</p> <p>Results</p> <p>Viability of treated and 2 days cultured bone explants was investigated by lactate dehydrogenase assay. Non-treated cultured control explants maintained around 50% osteocyte viability, while osteocyte survival after the positive treatment control was abolished. The most dramatic loss in cell viability, together with a low standard deviation, was a repeated cycle of freezing and thawing.</p> <p>Conclusions</p> <p>To summarize, we present a freeze-thaw method for the creation of acellular bone explants, which is easy to perform, not time-consuming and provides consistent results.</p
Is a Washer a Mandatory Component in Young Trauma Patients with S1-S2 Iliosacral Screw Fixation of Posterior Pelvis Ring Injuries? A Biomechanical Study
Background and purpose: Cannulated screws are standard implants for percutaneous fixa-tion of posterior pelvis ring injuries. The choice of whether to use these screws in combination with a washer is still undecided. The aim of this study was to evaluate the biomechanical competence of S1-S2 sacroiliac (SI) screw fixation with and without using a washer across three different screw designs. Material and Methods: Twenty-four composite pelvises were used and an SI joint injury type APC III according to the Young and Burgess classification was simulated. Fixation of the posterior pelvis ring was performed using either partially threaded short screws, fully threaded short screws, or fully threaded long transsacral screws. Biomechanical testing was performed under progressively increasing cyclic loading until failure, with monitoring of the intersegmental and bone-implant movements via motion tracking. Results: The number of cycles to failure and the corresponding load at failure (N) were significantly higher for the fully threaded short screws with a washer (3972 ± 600/398.6 ± 30.0) versus its counterpart without a washer (2993 ± 527/349.7 ± 26.4), p = 0.026. In contrast, these two parameters did not reveal any significant differences when comparing fixations with and without a washer using either partially threaded short of fully threaded long transsacral screws, p ℠0.359. Conclusions: From a biomechanical perspective, a washer could be optional when using partially threaded short or fully threaded long transsacral S1-S2 screws for treatment of posterior pelvis ring injuries in young trauma patients. Yet, the omission of the washer in fully threaded short screws could lead to a significant diminished biomechanical stability
- âŠ