2,336 research outputs found

    Clockwise Stellar Disk and the Dark Mass in the Galactic Center

    Full text link
    Two disks of young stars have recently been discovered in the Galactic Center. The disks are rotating in the gravitational field of the central black hole at radii r=0.1-0.3 pc and thus open a new opportunity to measure the central mass. We find that the observed motion of stars in the clockwise disk implies M=4.3+/-0.5 million solar masses for the fiducial distance to the Galactic Center R_0=8 kpc and derive the scaling of M with R_0. As a tool for our estimate we use orbital roulette, a recently developed method. The method reconstructs the three-dimensional orbits of the disk stars and checks the randomness of their orbital phases. We also estimate the three-dimensional positions and orbital eccentricities of the clockwise-disk stars.Comment: Comments: 16 pages, 5 figures, ApJ, in pres

    The need for a second black hole at the Galactic center

    Full text link
    Deep infra-red observations and long-term monitoring programs have provided dynamical evidence for a supermassive black hole of mass 3.e6 solar masses associated with the radio source Sagitarrius A* at the center of our Galaxy. The brightest stars orbiting within 0.1 parsecs of the black hole appear to be young, massive main sequence stars, n spite of an environment near the black hole that is hostile to star formation. We discuss mechanisms by which stars born outside the central parsec can sink towards the black hole and conclude that the drag coming from plausible stellar populations does not operate on the short timescales required by the stellar ages. We propose that these stars were dragged in by a second black hole of mass of 1.e3-1.e4 solar masses, which would be classified as an intermediate-mass black hole. We discuss the implications for the stellar populations and the kinematics in the Galactic center. Finally we note that continued astrometric monitoring of the central radio source offers the prospect for a direct detection of such objects.Comment: 5 pages, 2 postscript figures, submitted to ApJ letters The introduction section has been updated since submission to Ap

    A polarised infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots

    Get PDF
    In this article we summarise and discuss the infrared, radio, and X-ray emission from the supermassive black hole in the Galactic Centre, SgrA*. We include new results from near-infrared polarimetric imaging observations obtained on May 31st, 2006. In that night, a strong flare in Ks band (2.08 microns) reaching top fluxes of ~16 mJy could be observed. This flare was highly polarised (up to ~40%) and showed clear sub-structure on a time scale of 15 minutes, including a swing in the polarisation angle of about 70 degrees. For the first time we were able to observe both polarised flux and short-time variability, with high significance in the same flare event. This result adds decisive information to the puzzle of the SgrA* activity. The observed polarisation angle during the flare peak is the same as observed in two events in 2004 and 2005. Our observations strongly support the dynamical emission model of a decaying plasma hotspot orbiting SgrA* on a relativistic orbit. The observed polarisation parameters and their variability with time might allow to constrain the orientation of accretion disc and spin axis with respect to the Galaxy.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    Near-Infrared-Spectroscopy with Extremely Large Telescopes: Integral-Field- versus Multi-Object-Instruments

    Get PDF
    Integral-field-spectroscopy and multi-object-spectroscopy provide the high multiplex gain required for efficient use of the upcoming generation of extremely large telescopes. We present instrument developments and designs for both concepts, and how these designs can be applied to cryogenic near-infrared instrumentation. Specifically, the fiber-based concept stands out the possibility to expand it to any number of image points, and its modularity predestines it to become the new concept for multi-field-spectroscopy. Which of the three concepts --- integral-field-, multi-object-, or multi-field-spectroscopy --- is best suited for the largest telescopes is discussed considering the size of the objects and their density on the sky.Comment: 8 pages, 4 figures (converted to bitmap), to appear in the proceedings of the Workshop on Extremely Large Telescopes, Sweden, June 1-2, 1999, uses spie.sty (V0.91) and spiebib.bst (V0.91

    Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    Full text link
    (Abridged) Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broad band spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, DL07) and a modified black body (MBB). As long as the observed SED extends to at least 160-200 micron in the rest frame, M(dust) can be recovered with a >3 sigma significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. At the depth of the deepest Herschel surveys (in the GOODS-S field) it is possible to retrieve dust masses with a S/N>=3 for galaxies on the main sequence of star formation (MS) down to M(stars)~1e10 [M(sun)] up to z~1. At higher redshift (z<=2) the same result is achieved only for objects at the tip of the MS or lying above it. Molecular gas masses, obtained converting M(dust) through the metallicity-dependent gas-to-dust ratio delta(GDR), are consistent with those based on the scaling of depletion time, and on CO spectroscopy. Focusing on CO-detected galaxies at z>1, the delta(GDR) dependence on metallicity is consistent with the local relation. We combine far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full SED coverage.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures have degraded quality for filesize reason

    Tidal scattering of stars on supermassive black holes in galactic centers

    Get PDF
    Some of the mass that feeds the growth of a massive black hole (BH) in a galactic center is supplied by tidal disruption of stars that approach it on unbound, low angular momentum orbits. For each star that is disrupted, others narrowly escape after being subjected to extreme tidal distortion, spin-up, mixing and mass-loss, which may affect their evolution and appearance. We show that it is likely that a significant fraction of the stars around massive BHs in galactic centers have undergone such extreme tidal interactions and survived subsequent total disruption, either by being deflected off their orbit or by missing the BH due to its Brownian motion. We discuss possible long-term observable consequences of this process, which may be relevant for understanding the nature of stars in galactic centers, and may provide a signature of the existence of massive BHs there.Comment: 5 pages 4 figures. ApJL in press, minor changes to reflect journal version including redifinition of unbound tidally disturbed stars and additional reference

    Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    Get PDF
    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.Comment: Accepted for publication in Science, 40 pages, 7 figures, Supplementary Information include

    On the nature of the fast moving star S2 in the Galactic Center

    Full text link
    We analyze the properties of the star S2 orbiting the supermassive black hole at the center of the Galaxy. A high quality SINFONI H and K band spectrum obtained from coadding 23.5 hours of observation between 2004 and 2007 reveals that S2 is an early B dwarf (B0-2.5V). Using model atmospheres, we constrain its stellar and wind properties. We show that S2 is a genuine massive star, and not the core of a stripped giant star as sometimes speculated to resolve the problem of star formation so close to the supermassive black hole. We give an upper limit on its mass loss rate, and show that it is He enriched, possibly because of the presence of a magnetic field.Comment: 4 pages, 5 figures, ApJ letters accepte

    On Quasar Masses and Quasar Host Galaxies

    Get PDF
    The mass of massive black holes in quasar cores can be deduced using the typical velocities of Hb-emitting clouds in the Broad Line Region (BLR) and the size of this region. However, this estimate depends on various assumptions and is susceptible to large systematic errors. The Hb-deduced black hole mass in a sample of 14 bright quasars is found here to correlate with the quasar host galaxy luminosity, as determined with the Hubble Space Telescope (HST). This correlation is similar to the black hole mass vs. bulge luminosity correlation found by Magorrian et al. in a sample of 32 nearby normal galaxies. The similarity of the two correlations is remarkable since the two samples involve apparently different types of objects and since the black hole mass estimates in quasars and in nearby galaxies are based on very different methods. This similarity provides a ``calibration'' of the Hb-deduced black hole mass estimate, suggesting it is accurate to +-0.5 on log scale. The similarity of the two correlations also suggests that quasars reside in otherwise normal galaxies, and that the luminosity of quasar hosts can be estimated to +-0.5 mag based on the quasar continuum luminosity and the Hb line width. Future imaging observations of additional broad-line active galaxies with the HST are required in order to explore the extent, slope, and scatter of the black hole mass vs. host bulge luminosity correlation in active galaxies.Comment: Accepted for publication in ApJ Letters, 7 pages, aas2pp4.st
    • …
    corecore