36 research outputs found

    Novel Route to Produce Hydrocarbons from Woody Biomass Using Molten Salts

    Get PDF
    [Image: see text] The thermochemical decomposition of woody biomass has been widely identified as a promising route to produce renewable biofuels. More recently, the use of molten salts in combination with pyrolysis has gathered increased interest. The molten salts may act as a solvent, a heat transfer medium, and possibly also a catalyst. In this study, we report experimental studies on a process to convert woody biomass to a liquid hydrocarbon product with a very low oxygen content using molten salt pyrolysis (350–450 °C and atmospheric pressure) followed by subsequent catalytic conversions of the liquids obtained by pyrolysis. Pyrolysis of woody biomass in molten salt (ZnCl(2)/NaCl/KCl with a molar composition of 60:20:20) resulted in a liquid yield of 46 wt % at a temperature of 450 °C and a molten salt/biomass ratio of 10:1 (mass). The liquids are highly enriched in furfural (13 wt %) and acetic acid (14 wt %). To reduce complexity and experimental issues related to the production of sufficient amounts of pyrolysis oils for further catalytic upgrading, model studies were performed to convert both compounds to hydrocarbons using a three-step catalytic approach, viz., (i) ketonization of acetic acid to acetone, (ii) cross-aldol condensation between acetone and furfural to C(8)–C(13) products, followed by (iii) a two-stage catalytic hydrotreatment of the latter to liquid hydrocarbons. Ketonization of acetic acid to acetone was studied in a continuous setup over a ceria–zirconia-based catalyst at 250 °C. The catalyst showed no signs of deactivation over a period of 230 h while also achieving high selectivity toward acetone. Furfural was shown to have a negative effect on the catalyst performance, and as such, a separation step is required after pyrolysis to obtain an acetic-acid-enriched fraction. The cross-aldol condensation reaction between acetone and furfural was studied in a batch using a commercial Mg/Al hydrotalcite as the catalyst. Furfural was quantitatively converted with over 90% molar selectivity toward condensed products with a carbon number between C(8) and C(13). The two-stage hydrotreatment of the condensed product consisted of a stabilization step using a Ni-based Picula catalyst and a further deep hydrotreatment over a NiMo catalyst, in both batch setups. The final product with a residual 1.5 wt % O is rich in (cyclo)alkanes and aromatic hydrocarbons. The overall carbon yield for the four-step approach, from pinewood biomass to middle distillates, is 21%, assuming that separation of furfural and acetic acid after the pyrolysis step can be performed without losses

    Catalytic Hydrogenation of Renewable Levulinic Acid to γ-Valerolactone:Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors

    Get PDF
    γ-Valerolactone (GVL) is readily obtained by the hydrogenation of levulinic acid (LA) and is considered a sustainable platform chemical for the production of biobased chemicals. Herein, the performance and stability of Ru-based catalysts (1 wt % Ru) supported on TiO2 (P25) and ZrO2 (monoclinic) for LA hydrogenation to GVL is investigated in the liquid phase in batch and continuous-flow reactors using water and dioxane as solvents. Particular attention is paid to the influence of possible impurities in the LA feed on catalyst performance for LA hydrogenation. Benchmark continuous-flow experiments at extended times on-stream showed that the deactivation profiles are distinctly different for both solvents. In dioxane, the Ru/ZrO2 catalyst is clearly more stable than Ru/TiO2, whereas the latter is slightly more stable in water. Detailed characterization studies on spent catalysts after long run times showed that the deactivation of Ru/TiO2 is strongly linked to the reduction of a significant amount of Ti4+ species of the support to Ti3+ and a decrease in the specific surface area of the support in comparison to the fresh catalyst. Ru/ZrO2 showed no signs of support reduction and displayed morphological and structural stability; however, some deposition of carbonaceous material is observed. Impurities in the LA feed such as HCOOH, H2SO4, furfural (FFR), 5-hydroxymethylfurfural (HMF), humins, and sulfur-containing amino acids impacted the catalyst performance differently. The results reveal a rapid yet reversible loss of activity for both catalysts upon HCOOH addition to LA, attributed to its preferential adsorption on Ru sites and possible CO poisoning. A more gradual drop in activity is found when cofeeding HMF, FFR, and humins for both solvents. The presence of H2SO4, cysteine, and methionine all resulted in the irreversible deactivation of the Ru catalysts. The results obtained provide new insights into the (ir)reversible (in)sensitivity of Ru-based hydrogenation catalysts to potential impurities in LA feeds, which is essential knowledge for next-generation catalyst development

    Vapor-Phase Oxidation of Benzyl Alcohol Using Manganese Oxide Octahedral Molecular Sieves (OMS-2)

    Get PDF
    Vapor-phase selective oxidation of benzyl alcohol has been accomplished using cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2) catalysts. A conversion of 92% and a selectivity to benzaldehyde of 99% were achieved using OMS-2. The role played by the oxidant in this system was probed by studying the reaction in the absence of oxidant. The natures of framework transformations occurring during the oxidation reaction were fully studied using temperature-programmed techniques, as well as in situ X-ray diffraction under different atmospheres

    Titania Condensation by a Bio-Inspired Synthetic Block Copolymer

    No full text
    Silicatein α, an enzyme found at the center of silica spicules in marine sponges, is known to play a role in silica condensation from seawater. It has also been shown to catalyze the formation of silica from various silica precursors such as tetraethyl orthosilicate (TEOS). Inspired by the finding that the serine-26 and histidine-165 amino acids in the enzyme are required for silica formation from TEOS, we synthesized poly­(hydroxylated isoprene-<i>b</i>-2-vinylpyridine) block copolymers to mimic these amino acid residues. Here, we present the results of our investigation utilizing this biomimetic polymer to condense titania from titanium <i>iso</i>-propoxide (TiP). Our silicatein α mimic is shown to condense titania at neutral pH and room temperature and is compared to material produced by standard sol–gel methods. Heats of crystallization are observed to be 72% lower for the titania made from the mimic polymer, and indistinct X-ray diffraction peaks, even after heating well above the crystallization temperature, suggest a higher degree of titania condensation with the silicatein α mimic. Results from thermogravimetric analysis show that the mimic formed titania initially contains ∼15 wt % polymer and that the surface area increases from less than 5 to greater than 110 m<sup>2</sup>/g when heated to 400 °C. Titania made from the silicatein α mimic also shows a higher catalytic activity than does commercial Degussa P25 TiO<sub>2</sub> for the photodegradation of N-nitrosodimethylamine (NDMA), degrading 73% of the NDMA in two hours as compared to 62% with Degussa P25. The biomimetic system presented here offers the promise of an environmentally friendlier method of titania production and will enable applications requiring neutral pH and low temperatures, such as titania composite synthesis, surface coating, or catalyst design

    Novel Route to Produce Hydrocarbons from Woody Biomass Using Molten Salts

    No full text
    The thermochemical decomposition of woody biomass has been widely identified as a promising route to produce renewable biofuels. More recently, the use of molten salts in combination with pyrolysis has gathered increased interest. The molten salts may act as a solvent, a heat transfer medium, and possibly also a catalyst. In this study, we report experimental studies on a process to convert woody biomass to a liquid hydrocarbon product with a very low oxygen content using molten salt pyrolysis (350-450 °C and atmospheric pressure) followed by subsequent catalytic conversions of the liquids obtained by pyrolysis. Pyrolysis of woody biomass in molten salt (ZnCl2/NaCl/KCl with a molar composition of 60:20:20) resulted in a liquid yield of 46 wt % at a temperature of 450 °C and a molten salt/biomass ratio of 10:1 (mass). The liquids are highly enriched in furfural (13 wt %) and acetic acid (14 wt %). To reduce complexity and experimental issues related to the production of sufficient amounts of pyrolysis oils for further catalytic upgrading, model studies were performed to convert both compounds to hydrocarbons using a three-step catalytic approach, viz., (i) ketonization of acetic acid to acetone, (ii) cross-aldol condensation between acetone and furfural to C8-C13products, followed by (iii) a two-stage catalytic hydrotreatment of the latter to liquid hydrocarbons. Ketonization of acetic acid to acetone was studied in a continuous setup over a ceria-zirconia-based catalyst at 250 °C. The catalyst showed no signs of deactivation over a period of 230 h while also achieving high selectivity toward acetone. Furfural was shown to have a negative effect on the catalyst performance, and as such, a separation step is required after pyrolysis to obtain an acetic-acid-enriched fraction. The cross-aldol condensation reaction between acetone and furfural was studied in a batch using a commercial Mg/Al hydrotalcite as the catalyst. Furfural was quantitatively converted with over 90% molar selectivity toward condensed products with a carbon number between C8and C13. The two-stage hydrotreatment of the condensed product consisted of a stabilization step using a Ni-based Picula catalyst and a further deep hydrotreatment over a NiMo catalyst, in both batch setups. The final product with a residual 1.5 wt % O is rich in (cyclo)alkanes and aromatic hydrocarbons. The overall carbon yield for the four-step approach, from pinewood biomass to middle distillates, is 21%, assuming that separation of furfural and acetic acid after the pyrolysis step can be performed without losses

    Pyrolysis of LignoBoost lignin in ZnCl2-KCl-NaCl molten salt media: Insights into process-pyrolysis oil yield and composition relations

    Get PDF
    Depolymerization of lignin by pyrolysis has been identified as a viable route to produce renewable fuels and biobased platform chemicals. Herein we report the pyrolysis of LignoBoost lignin in a molten salt consisting of ZnCl2-KCl-NaCl (60:20:20 mol ratio) in a g-scale reactor set-up with a focus on the liquid phase yields and composition. The effects of relevant process parameters such as temperature (250–450 °C), reaction time (10–50 min), and N2 flow rate (10–30 mL min−1) on the product yields were elucidated using design of experiments. The highest bio-oil yield was 47.1 wt% (450 °C, 10 min) and the yield of organics in the bio-oil at this condition was 24 wt% (on lignin intake), the remainder being water. The latter is considerably higher than found for an experiment at similar conditions without salt (16 wt%). Temperature and reaction time were shown to have the largest effects on bio-oil yield. Prolonged reaction times resulted in higher amounts of gas phase components (H2, CO2) and water, and a reduced amount of solid products. Statistical analyses and validation experiments showed that the experimental product yields are in good agreement with the predicted values from the model. The properties and molecular composition of the liquid products were determined using various analytical techniques and reveal that the presence of a molten salt during pyrolysis has a positive influence on the composition of the liquid phase like a higher level of depolymerization and higher selectivity to aromatic and phenolic monomers compared to thermal pyrolysis

    Catalytic Hydrogenation of Renewable Levulinic Acid to γ-Valerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors

    No full text
    γ-Valerolactone (GVL) is readily obtained by the hydrogenation of levulinic acid (LA) and is considered a sustainable platform chemical for the production of biobased chemicals. Herein, the performance and stability of Ru-based catalysts (1 wt % Ru) supported on TiO2 (P25) and ZrO2 (monoclinic) for LA hydrogenation to GVL is investigated in the liquid phase in batch and continuous-flow reactors using water and dioxane as solvents. Particular attention is paid to the influence of possible impurities in the LA feed on catalyst performance for LA hydrogenation. Benchmark continuous-flow experiments at extended times on-stream showed that the deactivation profiles are distinctly different for both solvents. In dioxane, the Ru/ZrO2 catalyst is clearly more stable than Ru/TiO2, whereas the latter is slightly more stable in water. Detailed characterization studies on spent catalysts after long run times showed that the deactivation of Ru/TiO2 is strongly linked to the reduction of a significant amount of Ti4+ species of the support to Ti3+ and a decrease in the specific surface area of the support in comparison to the fresh catalyst. Ru/ZrO2 showed no signs of support reduction and displayed morphological and structural stability; however, some deposition of carbonaceous material is observed. Impurities in the LA feed such as HCOOH, H2SO4, furfural (FFR), 5-hydroxymethylfurfural (HMF), humins, and sulfur-containing amino acids impacted the catalyst performance differently. The results reveal a rapid yet reversible loss of activity for both catalysts upon HCOOH addition to LA, attributed to its preferential adsorption on Ru sites and possible CO poisoning. A more gradual drop in activity is found when cofeeding HMF, FFR, and humins for both solvents. The presence of H2SO4, cysteine, and methionine all resulted in the irreversible deactivation of the Ru catalysts. The results obtained provide new insights into the (ir)reversible (in)sensitivity of Ru-based hydrogenation catalysts to potential impurities in LA feeds, which is essential knowledge for next-generation catalyst development
    corecore