26 research outputs found

    Severe diarrhea outbreak in beef calves (Bos indicus) caused by G6P[11], an emergent genotype of bovine rotavirus group A

    Full text link
    The episodes of diarrhea caused by neonatal bovine rotavirus group A (BoRVA) constitute one of the major health problems in the calf rearing worldwide. The main G (VP7) and P (VP4) genotypes of BoRVA strains involved in the etiology of diarrhea in calves are G6P[1], G10P[11], G6P[5], and G8P[1]. However, less frequently, other G and P genotypes have been described in BoRVA strains identified in diarrheic fecal samples of calves. This study describes the identification and molecular characterization of an emerging genotype (G6P[11]) in BoRVA strains involved in the etiology of a diarrhea outbreak in beef calves in a cattle herd of high production in extensive management system. The diarrhea outbreak, which showed high morbidity (60%) and lethality (7%) rates, occurred in calves (n= 384) Nelore (Bos indicus) up to 30-day-old from the State of Mato Grosso do Sul, Brazil. BoRVA was identified in 80% (16/20) of the fecal samples analyzed by polyacrylamide gel electrophoresis (PAGE) technique. In all PAGE-positive fecal samples were amplified products with 1,062-bp and 876-bp in the RT-PCR assays for VP7 (G type) and VP4 (VP8*) (P type) of BoRVA, respectively. The nucleotide sequence analysis of VP7 and VP4 genes of four wild-type BoRVA strains showed G6-III P[11]-III genotype/lineage. The G6P[11] genotype has been described in RVA strains of human and animal hosts, however, in calves this genotype was only identified in some cross-sectional studies and not as a single cause of diarrhea outbreaks in calves with high morbidity and lethality rates as described in this study. The monitoring of the G and P genotypes of BoRVA strains involved in diarrhea outbreaks in calves is important for both animal and public health by allowing the identification of the most frequent genotypes, the characterization of novel genotypes and to identify reassortments with genotypes described in animal and human hosts. The results of this study show the importance of the monitoring of the genotypes of BoRVA strains involved in episodes of bovine neonatal diarrhea as for characterization of frequency of occurrence and pathogenic potential of uncommon genotypes as for monitoring of the emergency of different BoRVA genotypes not included in commercial vaccines

    Characterization of Nontypeable Rotavirus Strains from the United States: Identification of a New Rotavirus Reassortant (P2A[6],G12) and Rare P3[9] Strains Related to Bovine Rotaviruses

    Get PDF
    AbstractAmong 1316 rotavirus specimens collected during strain surveillance in the United States from 1996 to 1999, most strains (95%) belonged to the common types (G1 to G4 and G9), while 5% were mixed infections of common serotypes, rare strains, or not completely typeable. In this report, 2 rare (P[9],G3) and 2 partially typeable (P[6],G?; P[9],G?) strains from that study were further characterized. The P[6] strain was virtually indistinguishable by hybridization analysis in 10 of its 11 gene segments with recently isolated P2A[6],G9 strains (e.g., U.S.1205) from the United States, but had a distinct VP7 gene homologous (94.7% aa and 90.2% nt) to the cognate gene from P1B[4],G12 reference strain L26. Thus, this serotype P2A[6],G12 strain represents a previously unrecognized reassortant. Three P3[9] strains were homologous (97.8–98.2% aa) in the VP8 region of VP4 to the P3[9],G3 feline-like reference strain AU-1, but had a high level of genome homology to Italian bovine-like, P3[9],G3 and P3[9],G6 rotavirus strains. Two of the U.S. P3[9] strains were confirmed to be type G3 (97.2–98.2% VP7 aa homology with reference G3 strain AU-1), while the other was most similar to Italian bovine-like strain PA151 (P3[9],G6), sharing 99.0% aa homology in VP7. Cross-neutralization studies confirmed all serotype assignments and represented the first detection of these rotavirus serotypes in the United States. The NSP4 genes of all U.S. P3[9] strains and rotavirus PA151 were most closely related to the bovine and equine branch within the DS-1 lineage, consistent with an animal origin. These results demonstrate that rare strains with P and G serotypes distinct from those of experimental rotavirus vaccines circulate in the United States, making it important to understand whether current vaccine candidates protect against these strains

    Human group C rotavirus in children with diarrhea in the Federal District, Brazil

    No full text
    Group C rotaviruses are fastidious in their in vitro cell culture requirements. Recent serosurveys indicate that antibody to group C rotavirus is present in 3-45% of the human population in certain geographic locations, suggesting that rotavirus group C infection is more prevalent than previously believed and that the low rate of detection of these agents is probably due to the lack of sensitive diagnostic assays. From March to December 1994, 406 fecal specimens were collected from children under five years of age who were outpatients at the emergency services of nine public hospitals in Brasília, Federal District, Brazil. In addition to the samples from children, one public outpatient unit requested virological investigation of a stool sample from an HIV-seropositive adult male with diarrhea of sudden onset. All samples were analyzed by enzyme immunoassay for group A rotavirus and adenovirus (EIARA) and by polyacrylamide gel electrophoresis (PAGE). One hundred and seven (26%) were positive for group A rotavirus. Four samples from children and the sample from the HIV-seropositive patient, although negative by EIARA, showed a group C rotavirus profile by PAGE and were positive for rotavirus by electron microscopy. Using specific VP6 and VP7 primers for group C rotavirus, a reverse transcriptase-polymerase chain reaction (RT-PCR) was performed and products were detected by agarose gel electrophoresis and ethidium bromide staining. These products were confirmed to be specific for group C rotavirus by using digoxigenin-oligonucleotide probes, Southern hybridization and chemiluminescent detection. The five positive group C rotavirus samples were detected in August (3 samples) and September (2 samples). To the best of our knowledge, this is the first report of group C rotavirus detected in the Federal District, Brazil and in an HIV-seropositive patient with acute gastroenteritis

    Molecular Characterization of Serotype G9 Rotavirus Strains from a Global Collection

    Get PDF
    AbstractBetween 1992 and 1998, serotype G9 human rotavirus (RV) strains have been detected in 10 countries, including Thailand, India, Brazil, Bangladesh, Malawi, Italy, France, the United States, the United Kingdom, and Australia, suggesting the possible emergence of the fifth common serotype worldwide. Unlike the previously characterized reference G9 strains (i.e., WI61 and F45), the recent G9 isolates had a variety of gene combinations, raising questions concerning their origin and evolution. To identify the progenitor strain and examine the on-going evolution of the recent G9 strains, we characterized by genetic and antigenic analyses 16 isolates obtained from children with diarrhea in India, Bangladesh, the United States, and Malawi. Specifically, we sequenced their VP7 and NSP4 genes and compared the nucleotide (nt) and deduced amino acid sequences with the reference G9 strains. To identify reassortment, we examined the products of five gene segments; VP4, VP7, and NSP4 genotypes (genes 4, 9, and 10); subgroups (gene 6); electropherotypes (gene 11); and the genogroup profiles of all of the recent G9 isolates. Sequence analysis of the VP7 gene indicated that the recent U.S. P[6],G9 strains were closely related to the Malawian G9 strains (>99% nt identity) but distinct from G9 strains of India (∼97% nt identity), Bangladesh (∼98% nt identity), and the reference strains (∼97% nt identity). Phylogenetic analysis identified a single cluster for the U.S. P[6],G9 strains that may have common progenitors with Malawian P[6],G9 strains whereas separate lineages were defined for the Indian, Bangladeshi, and reference G9 strains. Northern hybridization results indicated that all 11 gene segments of the Malawian P[6],G9 strains hybridized with a probe derived from a U.S. strain of the same genotype and may have the same progenitor, different from the Indian G9 strains, whereas the Bangladesh strains may have evolved from the U.S. G9 progenitors. Overall, our findings suggest that much greater diversity among the newly identified G9 strains has been generated by reassortment between gene segments than through the accumulation of mutations in a single gene
    corecore