540 research outputs found

    On the convergence of Regge calculus to general relativity

    Get PDF
    Motivated by a recent study casting doubt on the correspondence between Regge calculus and general relativity in the continuum limit, we explore a mechanism by which the simplicial solutions can converge whilst the residual of the Regge equations evaluated on the continuum solutions does not. By directly constructing simplicial solutions for the Kasner cosmology we show that the oscillatory behaviour of the discrepancy between the Einstein and Regge solutions reconciles the apparent conflict between the results of Brewin and those of previous studies. We conclude that solutions of Regge calculus are, in general, expected to be second order accurate approximations to the corresponding continuum solutions.Comment: Updated to match published version. Details of numerical calculations added, several sections rewritten. 9 pages, 4 EPS figure

    A fully (3+1)-D Regge calculus model of the Kasner cosmology

    Get PDF
    We describe the first discrete-time 4-dimensional numerical application of Regge calculus. The spacetime is represented as a complex of 4-dimensional simplices, and the geometry interior to each 4-simplex is flat Minkowski spacetime. This simplicial spacetime is constructed so as to be foliated with a one parameter family of spacelike hypersurfaces built of tetrahedra. We implement a novel two-surface initial-data prescription for Regge calculus, and provide the first fully 4-dimensional application of an implicit decoupled evolution scheme (the ``Sorkin evolution scheme''). We benchmark this code on the Kasner cosmology --- a cosmology which embodies generic features of the collapse of many cosmological models. We (1) reproduce the continuum solution with a fractional error in the 3-volume of 10^{-5} after 10000 evolution steps, (2) demonstrate stable evolution, (3) preserve the standard deviation of spatial homogeneity to less than 10^{-10} and (4) explicitly display the existence of diffeomorphism freedom in Regge calculus. We also present the second-order convergence properties of the solution to the continuum.Comment: 22 pages, 5 eps figures, LaTeX. Updated and expanded versio

    An ADM 3+1 formulation for Smooth Lattice General Relativity

    Get PDF
    A new hybrid scheme for numerical relativity will be presented. The scheme will employ a 3-dimensional spacelike lattice to record the 3-metric while using the standard 3+1 ADM equations to evolve the lattice. Each time step will involve three basic steps. First, the coordinate quantities such as the Riemann and extrinsic curvatures are extracted from the lattice. Second, the 3+1 ADM equations are used to evolve the coordinate data, and finally, the coordinate data is used to update the scalar data on the lattice (such as the leg lengths). The scheme will be presented only for the case of vacuum spacetime though there is no reason why it could not be extended to non-vacuum spacetimes. The scheme allows any choice for the lapse function and shift vectors. An example for the Kasner T3T^3 cosmology will be presented and it will be shown that the method has, for this simple example, zero discretisation error.Comment: 18 pages, plain TeX, 5 epsf figues, gzipped ps file also available at http://newton.maths.monash.edu.au:8000/preprints/3+1-slgr.ps.g

    The constraints as evolution equations for numerical relativity

    Full text link
    The Einstein equations have proven surprisingly difficult to solve numerically. A standard diagnostic of the problems which plague the field is the failure of computational schemes to satisfy the constraints, which are known to be mathematically conserved by the evolution equations. We describe a new approach to rewriting the constraints as first-order evolution equations, thereby guaranteeing that they are satisfied to a chosen accuracy by any discretization scheme. This introduces a set of four subsidiary constraints which are far simpler than the standard constraint equations, and which should be more easily conserved in computational applications. We explore the manner in which the momentum constraints are already incorporated in several existing formulations of the Einstein equations, and demonstrate the ease with which our new constraint-conserving approach can be incorporated into these schemes.Comment: 10 pages, updated to match published versio

    A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods

    Full text link
    © 2018 IOP Publishing Ltd. Bottom-up fabrication of nanowire-based devices is highly attractive for oxide photonic devices because of high light extraction efficiency; however, unsatisfactory electrical injection into ZnO and poor carrier transport properties of nanowires severely limit their practical applications. Here, we demonstrate that ZnO nanorods doped with Ga donors by in situ dopant incorporation during vapour-solid growth exhibit superior optoelectronic properties that exceed those currently synthesised by chemical vapour deposition, and accordingly can be electrically integrated into Si-based photonic devices. Significantly, the doping method was found to improve the nanorod quality by decreasing the concentration of point defects. Light-emitting diodes (LEDs) fabricated from the Ga-doped ZnO nanorod/p-Si heterojunction display bright and colour-tunable electroluminescence (EL). These nanorod LEDs possess a dramatically enhanced performance and an order of magnitude higher EL compared with equivalent devices fabricated with undoped nanorods. These results point to an effective route for large-scale fabrication of conductive, single-crystalline ZnO nanorods for photonic and optoelectronic applications

    Constraints in Quantum Geometrodynamics

    Get PDF
    We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3--geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamical equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approaches leads to the well known problems of time evolution. These problems of time are of both an interpretational and technical nature. In contrast, the geometrodynamic quantization procedure on the superspace of the true dynamical variables separates the issues of quantization from the enforcement of the constraints. The resulting theory takes into account states that are off-shell with respect to the constraints, and thus avoids the problems of time. We develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context of homogeneous cosmologies.Comment: 36 pages, no figures, submitted to IJMPA, Rewording, Fixed Typo

    Reliable estimation of prediction uncertainty for physico-chemical property models

    Full text link
    The predictions of parameteric property models and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method akin to Bayesian inference that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the 57Fe Moessbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with twelve density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm/s and 0.04-0.05 mm/s, respectively, the latter being close to the average experimental uncertainty of 0.02 mm/s. Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the coefficient of correlation, r2, or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical Moessbauer spectroscopy, which is of general applicability for physico-chemical property models and not restricted to isomer-shift predictions. We provide the statistically meaningful reference data set MIS39 and a new calibration of the isomer shift based on the PBE0 functional.Comment: 49 pages, 9 figures, 7 table

    Charge state switching of Cu acceptors in ZnO nanorods

    Full text link
    © 2017 Author(s). Undoped and Ga-doped ZnO nanorods both exhibit an intense green luminescence (GL) band centered at ∼2.4 eV. Unlike the defect-related GL in undoped nanorods, the GL band in Ga-doped nanorods displays a periodic fine structure separated by 72 meV, which consists of doublets with an energy spacing of 30 ± 3 meV. The emergence of the structured GL is due to the Cu+ state being stabilized by the rise in the Fermi level above the 0/- (Cu2+/Cu+) charge transfer level as a result of Ga donor incorporation. From a combination of optical characterization and simulation using the Brownian oscillator model, the doublet fine structures are shown to originate from two hole transitions with the Cu+ state located at 390 meV above the valence band

    Electroluminescence from Localized Defects in Zinc Oxide: Toward Electrically Driven Single Photon Sources at Room Temperature

    Full text link
    © 2015 American Chemical Society. Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography, and quantum communications. However, the majority of room temperature emitters to date are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically driven light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit in the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open possibilities for building new ZnO-based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies. (Graph Presented)

    Is the Regge Calculus a consistent approximation to General Relativity?

    Full text link
    We will ask the question of whether or not the Regge calculus (and two related simplicial formulations) is a consistent approximation to General Relativity. Our criteria will be based on the behaviour of residual errors in the discrete equations when evaluated on solutions of the Einstein equations. We will show that for generic simplicial lattices the residual errors can not be used to distinguish metrics which are solutions of Einstein's equations from those that are not. We will conclude that either the Regge calculus is an inconsistent approximation to General Relativity or that it is incorrect to use residual errors in the discrete equations as a criteria to judge the discrete equations.Comment: 27 pages, plain TeX, very belated update to match journal articl
    corecore