20 research outputs found

    Malmstrom Air Force Base Wind Farm Economic Analys

    Get PDF
    The Air Force’s Civil Engineer Support Agency an

    Developing Government Renewable Energy Projects

    Get PDF
    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project

    A Comparison of Real Time Thermal Rating Systems in the U.S. and the UK

    Get PDF
    Real-Time Thermal Rating is a smart grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative, constant seasonal rating based on seasonal and regional worst case scenarios rather than actual, say, local hourly weather predictions. This paper provides a report of two pioneering schemes—one in the United States of America and one in the United Kingdom—in which Real-Time Thermal Ratings have been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Secondly, we critically compare both approaches and discuss their limitations. In doing so, we arrive at novel insights which will inform and improve future Real-Time Thermal Rating projects

    BioMass PDU Electrical Design Study UPDATE

    No full text
    The BioMass Process Demonstration Unit (PDU) elec

    Investigation of a Dynamic Power Line Rating Concept for Improved Wind Energy Integration Over Complex Terrain

    No full text
    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line conductor to be based on its real-time temperature. Currently, conductors are generally given a conservative static rating based on near worst case weather conditions. Using historical weather data collected over a test bed area in Idaho, we demonstrate there is often additional transmission capacity not being utilized under the current static rating practice. We investigate a DLR method that employs computational fluid dynamics (CFD) to determine wind conditions along transmission lines in dense intervals. Simulated wind conditions are then used to calculate real-time conductor temperature under changing weather conditions. In calculating the conductor temperature and then inferring the ampacity, we use both a steady-state and transient calculation procedure. Under low wind conditions, the steady-state assumption predicts higher conductor temperatures which could lead to unnecessary curtailments, whereas the transient calculations produce temperatures that can be significantly lower, implying the availability of additional transmission capacity. Equally important, we demonstrate that capturing the wind direction variability in the simulations is critical in estimating conductor temperatures accurately
    corecore