442 research outputs found

    Feasibility study of novel crew wellbeing and alternative countermeasures solutions for recreational spaces in future Lunar permanent settlements

    Get PDF
    With the successful conclusion of the mission Artemis I, a new era of space exploration has started with the aim to pave the way for humans to return to the Moon. It is therefore of paramount importance to develop proper solutions for permanent outposts, with a special focus on habitability, ergonomics, and long-term usability in hypogravity environments such as the lunar environment. By focusing on crew psychophysiological wellbeing, this work revolves around the conception of spaces for the practice of new fitness and leisure activities as countermeasure against stress in long-term mission. It is well known that by introducing game components into exercise routines psychological and physiological wellbeing can be significantly improved, resulting in the enhancement of crew’s performance. Thus, the present study investigates how tennis, which has many proven health benefits, could theoretically be played under lunar gravity conditions focusing on how this game would change due to the lunar environmental factors in terms of regulation and equipment. A qualitative assessment is conducted through a comparative evaluation of the features of racket-ball sports practised on the Earth, to better adapt rules and playing of tennis to lunar conditions. Furthermore, the investigation addresses the study of the technical feasibility of a lunar tennis facility, in order to provide lunar settlements design with new elements to enhance habitability in long-duration human missions on the Moon

    A multidisciplinary design tool for robotic systems involved in sampling operations on planetary bodies

    Get PDF
    The analysis of robotic systems (e.g. landers and rovers) involved in sampling operations on planetary bodies is crucial to ensure mission success, since those operations generate forces that could affect the stability of the robotic system. This paper presents MISTRAL (MultIdisciplinary deSign Tool for Robotic sAmpLing), a novel tool conceived for trade space exploration during early conceptual and preliminary design phases, where a rapid and broad evaluation is required for a very high number of configurations and boundary conditions. The tool rapidly determines the preliminary design envelope of a sampling apparatus to guarantee the stability condition of the whole robotic system. The tool implements a three-dimensional analytical model capable to reproduce several scenarios, being able to accept various input parameters, including the physical and geometrical characteristics of the robotic system, the properties related to the environment and the characteristics related to the sampling system. This feature can be exploited to infer multidisciplinary high-level requirements concerning several other elements of the investigated system, such as robotic arms and footpads. The presented research focuses on the application of MISTRAL to landers. The structure of the tool and the analysis model are presented. Results from the application of the tool to real mission data from NASA’s Phoenix Mars lander are included. Moreover, the tool was adopted for the definition of the high-level requirements of the lander for a potential future mission to the surface of Saturn’s moon Enceladus, currently under investigation at NASA Jet Propulsion Laboratory. This case study was included to demonstrate the tool’s capabilities. MISTRAL represents a comprehensive, versatile, and powerful tool providing guidelines for cognizant decisions in the early and most crucial stages of the design of robotic systems involved in sampling operations on planetary bodies

    On the Role of Nonsynchronous Rotating Damping in Rotordynamics

    Get PDF
    Nonsynchronous rotating damping, i.e. energy dissipations occurring in elements rotating at a speed different from the spin speed of a rotor, can have substantial effects on the dynamic behaviour and above all on the stability of rotating systems

    Modular Lunar Hotel

    Get PDF
    The aim of this paper is to propose an innovative modular lunar hotel or outpost that can be assembled using the load capacity of future rockets Space X is at present developing and presumably will be opera- tional by 2025. In particular, the design is based on the Space X Starship, that will have the capability to land large and heavy payloads on the Moon. The lunar building is essentially made of four cylindrical modules assembled around one central distribution and service hub. These four modules, intended for housing, have a geodesic dome with large windows to observe the lunar environment surrounding the outpost. The entry point to the base is in the lower part of the central module, which is the only part of the building touching the ground and rests on four adjustable legs. The central module will be used for vertical connections and services as well as for hydroponic laboratories and greenhouses in which to grow the food the settlers will eat. The whole structure will be about 15m high and will be protected from cosmic radiation by a magnetic eld generated by a number of electric cables laid on a spherical structure made of in a table high pressure tubes. The modules can be made of light materials since the protection from radiation is supplied by the magnetic eld, and need only a thermal insulating layer, which can be fairly light. The whole structure can thus be carried from Earth without the need of manufacturing it on site. As an added advantage, large windows can be present, mainly in the a top domes/observatories, which will be the characteristic elements of the installation. The cylindrical modules have a diameter of 6m, suitable to be transported in the cargo hold of the Starship. To reach an height of 15m, they are made in sections and then assembled on site. The modules will be lowered from the hold of the Starship by means of the crane with which each spaceship is equipped. Before starting the assembly of the modules, self-propelled cranes and vehicles will be carried to the Moon so that the construction site of the hotel/outpost can be relatively distant from the landing area. These construction machines will then remain available for other construction projects on the Moon. A total of about 10 launches are expected to be required to carry to the Moon all parts needed to build the facility

    A Modular Lunar Hotel

    Get PDF
    The aim of this paper is to propose an innovative modular lunar hotel/outpost that can be assembled using the load capacity of future rockets Space X is at present developing and presumably will be opera- tional by 2025. In particular, the design is based on the Space X' Starship, that will have the capability to land large and heavy payloads on the Moon. The lunar building is essentially made of four cylindrical modules assembled around one central distribution and service hub. These four modules, intended for housing, have a geodesic dome with large windows to observe the lunar environment surrounding the outpost. The entry point to the base is in the lower part of the central module, which is the only part of the building touching the ground and rests on four adjustable legs. The central module will be used for vertical connections and services as well as for hydroponic laboratories and greenhouses in which to grow the food the settlers will eat. The whole structure will be about 15m high and will be protected from cosmic radiation by a magnetic eld generated by a number of electric cables laid on a spherical structure made of in atable high pressure tubes. The modules can be made of light material since the protection form radiation is supplied by the magnetic eld, and need only a thermal insulating layer, which can be fairly light. The whole structure can thus be carried from Earth without the need of manufacturing it on site. As an added advantage, large windows can be present, mainly in the a top domes/observatories, which will be the characteristic elements of the installation. The cylindrical modules have a diameter of 6m, suitable to be transported in the cargo hold of the Starship. To reach an height of 15m, they are made in sections and then assembled on site. The modules will be lowered from the hold of the Starship by means of the crane with which each spaceship is equipped. Before starting the assembly of the modules, self-propelled cranes and vehicles will be carried to the Moon so that the construction site of the hotel/outpost can be relatively distant from the landing area. These construction machines will then remain available for other construction projects on the Moon. A total of about 10 launches are expected to be required to carry to the Moon all parts needed to build the facility

    Preliminary Assessment of a Small Robotic Rover for Titan Exploration

    No full text
    Titan is a very interesting target in deep space exploration. With its solid surface on which a rover can easily travel and its methane lakes which can be sailed it is the ideal target for a deep space mission which includes a mobile platform. In the present paper the general layout of a rover for a mission to Titan is studied, dealing with the mobility, power generation and trajectory control issues. A 4-wheels configuration with slip steering was chosen; to compare this solution with the more conventional strategy based on steering wheels, simulations were performed on some trajectories computed through the well known ‘potential' method, using both slip steering and conventional steering control, for different vehicle speeds. The comparison between the simulated trajectories allows to state the adequateness of the proposed approach. The results here obtained apply not only to a future mission to Titan, but also to other missions designed for the exploration of the satellites of the outer planets having a size comparable with that of Titan and the largest Kuiper belt objects like Pluto and 136472 Makemak
    • …
    corecore