2,286 research outputs found

    Using multiple reference ontologies: Managing composite annotations

    Get PDF
    There are a growing number of reference ontologies available across a variety of biomedical domains and current research focuses on their construction, organization and use. An important use case for these ontologies is annotation—where users create metadata that access concepts and terms in reference ontologies. We draw on our experience in physiological modeling to present a compelling use case that demonstrates the potential complexity of such annotations. In the domain of physiological biosimulation, we argue that most annotations require the use of multiple reference ontologies. We suggest that these “composite” annotations should be retained as a repository of knowledge about post-coordination that promotes sharing and interoperation across biosimulation models

    Advances in semantic representation for multiscale biosimulation: a case study in merging models

    Get PDF
    As a case-study of biosimulation model integration, we describe our experiences applying the SemSim methodology to integrate independently-developed, multiscale models of cardiac circulation. In particular, we have integrated the CircAdapt model (written by T. Arts for MATLAB) of an adapting vascular segment with a cardiovascular system model (written by M. Neal for JSim). We report on three results from the model integration experience. First, models should be explicit about simulations that occur on different time scales. Second, data structures and naming conventions used to represent model variables may not translate across simulation languages. Finally, identifying the dependencies among model variables is a non-trivial task. We claim that these challenges will appear whenever researchers attempt to integrate models from others, especially when those models are written in a procedural style (using MATLAB, Fortran, etc.) rather than a declarative format (as supported by languages like SBML, CellML or JSim’s MML)

    Integration of multi-scale biosimulation models via light-weight semantics

    Get PDF
    Currently, biosimulation researchers use a variety of computational environments and languages to model biological processes. Ideally, researchers should be able to semi- automatically merge models to more effectively build larger, multi-scale models. How- ever, current modeling methods do not capture the underlying semantics of these models sufficiently to support this type of model construction. In this paper, we both propose a general approach to solve this problem, and we provide a specific example that demon- strates the benefits of our methodology. In particular, we describe three biosimulation models: (1) a cardio-vascular fluid dynamics model, (2) a model of heart rate regulation via baroreceptor control, and (3) a sub-cellular-level model of the arteriolar smooth mus- cle. Within a light-weight ontological framework, we leverage reference ontologies to match concepts across models. The light-weight ontology then helps us combine our three models into a merged model that can answer questions beyond the scope of any single model

    Idiopathic osteoporosis in men

    Get PDF
    Over the last decade, the increasingly significant problem of osteoporosis in men has begun to receive much more attention than in the past. In particular, recent observations from large scale population studies in males led to an advance in the understanding of morphologic basis of growth, maintenance and loss of bone in men, as well as new insights about the pathophysiology and treatment of this disorder. While fracture risk consistently increases after age 65 in men (with up to 50 % of cases due to secondary etiologies), osteoporosis and fractures may also occur in young or middle aged males in the absence of an identifiable etiology. For this category (so called idiopathic osteoporosis), there are still major gaps in knowledge, particularly concerning the etiology and the clinical management. This article provides a summary of recent developments in the acquisition and maintenance of bone strength in men, as well as new insights about the pathogenesis, diagnosis, and treatment of idiopathic osteoporosis

    Physical Properties of Biological Entities: An Introduction to the Ontology of Physics for Biology

    Get PDF
    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities—molecules, cells, organs—are well-established, there are no principled ontologies of physical properties—energies, volumes, flow rates—of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration

    The TNG Near Infrared Camera Spectrometer

    Get PDF
    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limiting magnitudes. We also describe some technical details of the project, such as cryogenics, mechanics, and the system which executes data acquisition and control, along with the related software.Comment: 7 pages, 5 figures, compiled with A&A macros. A&A in pres

    Pulmonary congestion assessment in heart failure: traditional and new tools

    Get PDF
    Congestion related to cardiac pressure and/or volume overload plays a central role in the pathophysiology, presentation, and prognosis of heart failure (HF). Most HF exacerbations are related to a progressive rise in cardiac filling pressures that precipitate pulmonary congestion and symptomatic decompensation. Furthermore, persistent symptoms and signs of congestion at discharge or among outpatients are strong predictors of an adverse outcome. Pulmonary congestion is also one of the most important diagnostic and therapeutic targets in chronic heart failure. The aim of this review is to analyze the importance of clinical, instrumental, and biochemical evaluation of congestion in HF by describing old and new tools. Lung ultrasonography (LUS) is an emerging method to assess pulmonary congestion. Accordingly, we describe the additive prognostic role of chest ultrasound with respect to traditional clinical and X-ray assessment in acute and chronic HF setting

    Bridging Biological Ontologies and Biosimulation: The Ontology of Physics for Biology

    Get PDF
    We introduce and define the Ontology of Physics for Biology (OPB), a reference ontology of physical principles that bridges the gap between bioinformatics modeling of biological structures and the biosimulation modeling of biological processes. Whereas modeling anatomical entities is relatively wellstudied, representing the physics-based semantics of biosimulation and biological processes remains an open research challenge. The OPB bridges this semantic gap--linking the semantics of biosimulation mathematics to structural bio-ontologies. Our design of the OPB is driven both by theory and pragmatics: we have applied systems dynamics theory to build an ontology with pragmatic use for annotating biosimulation models
    • …
    corecore