24 research outputs found

    A General Approach for Calculating Coupling Impedances of Small Discontinuities

    Full text link
    A general theory of the beam interaction with small discontinuities of the vacuum chamber is developed taking into account the reaction of radiated waves back on the discontinuity. The reactive impedance calculated earlier is reproduced as the first order, and the resistive one as the second order of a perturbation theory based on this general approach. The theory also gives, in a very natural way, the results for the trapped modes due to small discontinuities obtained earlier by a different method.Comment: LaTeX, 3 pages (IEEE format), uses pac95.sty (20K

    ABSOLUTE BUNCH LENGTH MEASUREMENTS AT THE ALS BY INCOHERENTSYNCHROTRON RADIATION FLUCTUATION ANALYSIS

    Get PDF
    By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented

    Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    Full text link
    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter KK. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of KK. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.Comment: 10 pages, 8 figure

    Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam

    Get PDF
    Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations

    Trapped Modes In The Vacuum Chamber

    No full text
    A recent study [1] has shown that a small discontinuity such as an enlargement or a hole on circular waveguides can produce trapped electromagnetic modes with frequencies slightly below the waveguide cutoff. The trapped modes due to multiple discontinuities can lead to high narrow-band contributions to the beam-chamber coupling impedance, especially when the wall conductivity is high enough. To make more reliable estimates of these contributions for real machines, an analytical theory of the trapped modes is developed in this paper for a general case of the vacuum chamber with an arbitrary single-connected cross section. The resonant frequencies and coupling impedances due to trapped modes are calculated, and simple explicit expressions are given for circular and rectangular cross sections. The estimates for the LHC are presented
    corecore