16 research outputs found

    Transcription Factor Crosstalk and Regulatory Networks in Hypopharyngeal Squamous Cell Carcinoma

    Get PDF
    licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2014.03.24; Accepted: 2014.04.18; Published: 2014.06.16 To date, no effective therapeutic treatments have been developed for hypopharyngeal squamous cell carcinoma (HPSCC), a disease that has a five-year survival rate of approximately 31 % because of its late diagnosis and aggressive nature. Despite recent improvements in diagnostic methods, there are no effective measures to prevent or detect HPSCC in an early stage. The goal of the current study was to identify molecular biomarkers and networks that can facilitate the speedy identification of HPSCC patients who could benefit from individualized treatment. Isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed with two-dimensional liquid chromatography-tandem mass spectrometry to identify quantitatively the differentially expressed proteins among three types of HPSCC disease stages. The iTRAQ results were evaluated by literature searches and western blot analysis. For example, FUBP1, one of 412 proteins with significantl

    Preparation and characterization of a novel triple composite scaffold containing silk fibroin, chitosan, extracellular matrix and the mechanism of Akt/FoxO signaling pathway in colonic cancer cells cultured in 3D

    Get PDF
    This work examined the physical and chemical properties and biocompatibility in vivo and in vitro of a unique triple composite scaffold incorporating silk fibroin, chitosan, and extracellular matrix. The materials were blended, cross-linked, and freeze-dried to create a composite scaffold of silk fibroin/chitosan/colon extracellular matrix (SF/CTS/CEM) with varying CEM contents. The SF/CTS/CEM (1:1:1) scaffold demonstrated the preferable shape, outstanding porosity, favorable connectivity, good moisture absorption, and acceptable and controlled swelling and degradation properties. Additionally, HCT-116 cells cultivated with SF/CTS/CEM (1:1:1) showed excellent proliferation capacity, cell malignancy, and delayed apoptosis, according to the in vitro cytocompatibility examination. We also examined the PI3K/PDK1/Akt/FoxO signaling pathway and discovered that cell culture using a SF/CTS/CEM (1:1:1) scaffold may prevent cell death by phosphorylating Akt and suppressing FoxO expression. Our findings demonstrate the potential of the SF/CTS/CEM (1:1:1) scaffold as an experimental model for colonic cancer cell culture and for replicating the three-dimensional in vivo cell growth environment

    Research and implementation of intelligent gateway driver layer based on Linux bus

    No full text
    Currently,in the field of smart home,there is no relevant organization that yet has proposed an unified protocol standard.It increases the complexity and limitations of heterogeneous gateway software framework design that different vendor′s devices have different communication mode and protocol standards.In this paper,a serial of interfaces are provided by Linux kernel,and a virtual bus is registered under Linux.The physical device drivers are able to connect to the virtual bus.The detailed designs of the communication protocol are placed in the underlying adapters,making the integration of heterogeneous networks more natural.At the same time,designing the intelligent gateway system driver layer based on Linux bus can let the application layer be more unified and clear logical.And it also let the hardware access network become more convenient and distinct

    The automotive anti-collision system based on Ultrasonic

    No full text
    In the existing system of automobile anti-collision,the radar is mainly used for ranging.However,it can't be widely used because of its high cost.In this paper,based on the existing system of automobile anti-collision,the ultrasonic sensor is used to measure the distance and establish relevant anti-collision model.The experimental results show that the alarming information is accurate within a certain range

    High-Precision Detection Algorithm for Metal Workpiece Defects Based on Deep Learning

    No full text
    Computer vision technology is increasingly being widely applied in automated industrial production. However, the accuracy of workpiece detection is the bottleneck in the field of computer vision detection technology. Herein, a new object detection and classification deep learning algorithm called CSW-Yolov7 is proposed based on the improvement of the Yolov7 deep learning network. Firstly, the CotNet Transformer structure was combined to guide the learning of dynamic attention matrices and enhance visual representation capabilities. Afterwards, the parameter-free attention mechanism SimAM was introduced, effectively enhancing the detection accuracy without increasing computational complexity. Finally, using WIoUv3 as the loss function effectively mitigated many negative influences during training, thereby improving the model’s accuracy faster. The experimental results manifested that the [email protected] of CSW-Yolov7 reached 93.3%, outperforming other models. Further, this study also designed a polyhedral metal workpiece detection system. A large number of experiments were conducted in this system to verify the effectiveness and robustness of the proposed algorithm

    Selenium Nanoparticles Attenuate Cobalt Nanoparticle-Induced Skeletal Muscle Injury: A Study Based on Myoblasts and Zebrafish

    No full text
    Cobalt alloys have numerous applications, especially as critical components in orthopedic biomedical implants. However, recent investigations have revealed potential hazards associated with the release of nanoparticles from cobalt-based implants during implantation. This can lead to their accumulation and migration within the body, resulting in adverse reactions such as organ toxicity. Despite being a primary interface for cobalt nanoparticle (CoNP) exposure, skeletal muscle lacks comprehensive long-term impact studies. This study evaluated whether selenium nanoparticles (SeNPs) could mitigate CoNP toxicity in muscle cells and zebrafish models. CoNPs dose-dependently reduced C2C12 viability while elevating reactive oxygen species (ROS) and apoptosis. However, low-dose SeNPs attenuated these adverse effects. CoNPs downregulated myogenic genes and α-smooth muscle actin (α-SMA) expression in C2C12 cells; this effect was attenuated by SeNP cotreatment. Zebrafish studies confirmed CoNP toxicity, as it decreased locomotor performance while inducing muscle injury, ROS generation, malformations, and mortality. However, SeNPs alleviated these detrimental effects. Overall, SeNPs mitigated CoNP-mediated cytotoxicity in muscle cells and tissue through antioxidative and antiapoptotic mechanisms. This suggests that SeNP-coated implants could be developed to eliminate cobalt nanoparticle toxicity and enhance the safety of metallic implants

    Cervical <i>Staphylococcus aureus</i> Infection after Receiving the Third Dose of COVID-19 Vaccination: A Case Report

    No full text
    Introduction: Vaccination is one of the most effective ways to control the COVID-19 pandemic. However, as the number of people vaccinated against COVID-19 continues to increase, there are more reports on the safety of vaccines. So far, there have been no reported cases of spinal infection associated with COVID-19 vaccination. Recently, we admitted a patient who developed cervical Staphylococcus aureus infection resulting in high paraplegia after receiving the third dose of COVID-19 vaccine when the symptoms of cold did not completely disappear. Case presentation: The patient was a 70-year-old man who received the third injection of COVID-19 vaccine when the cold symptoms were not completely gone. On the day after the injection, the patient developed severe neck and shoulder pain, accompanied by numbness and fatigue in the limbs. MRI examination of the cervical spine on day 6 after vaccination showed no obvious signs of infection. The patient had progressive weakness in the extremities. On the ninth day after vaccination, the patient developed paralysis of both lower limbs and significant sensory loss. Cervical abscess and cervical spinal cord injury were considered for cervical CT and MRI examination on the 15th day after vaccination. We used an anterior approach to remove as much of the lesion as possible. Staphylococcus aureus was detected and antibiotic treatment was continued after surgery. The patient’s pain symptoms were significantly relieved, which prevented the abscess from further pressing the spinal cord and provided possible conditions for the recovery of neurological function in the later stage. Conclusion: This case is the first reported cervical Staphylococcus aureus infection resulting in high paraplegia after receiving the third dose of COVID-19 vaccine with low immunity. This case raises awareness of this rare but potentially life-threatening adverse reaction, and reminds people to hold off when their immune system is weakened

    Transparent Junctionless Thin-Film Transistors With Tunable Operation Mode

    No full text
    Junctionless low-voltage transparent indium-zincoxide (IZO) thin-film transistors (TFTs) gated by SiO2-based solid electrolyte films are fabricated on glass substrates by a full room-temperature process. The attractive feature of such TFTs is that the channel and source/drain electrodes are the same ultrathin IZO film without any source/drain electrodes. The operation mode of such devices can be tuned from depletion mode to enhancement mode when the thickness of the IZO film is reduced from 30 to 10 nm. Devices operated in both modes show a small subthreshold swing of < 120 mV/dec and a large current on/off ratio of > 106

    GABRD promotes progression and predicts poor prognosis in colorectal cancer

    No full text
    Little is known about the functional roles of gamma-aminobutyric acid type A receptor subunit delta (GABRD) in colorectal cancer (CRC). The expression of GABRD between CRCs and adjacent normal tissues (NTs), metastasis and primary tumors was compared using public transcriptomic datasets. A tissue microarray and immunohistochemical staining (IHC) were used to determine the clinical and prognostic significance of the GABRD in CRC. We used gain-of-function and loss-of-function experiments to investigate the in vitro roles of GABRD in cultured CRC cells. We characterized the potential mechanism of GABRD’s activities in CRC using a Gene Set Enrichment Analysis (GSEA) with The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset. We found that the GABRD expression was significantly increased in CRCs compared to that in NTs, but was similar between metastasis and primary tumors. Overexpression of GABRD was significantly associated with later pTNM stages and unfavorable patient survival. Overexpression of GABRD accelerated while knock-down of GABRD inhibited cell growth and migration. Mechanistically, the function of GABRD might be ascribed to its influence on major oncogenic events such as epithelial–mesenchymal transition (EMT), angiogenesis, and hedgehog signaling. Collectively, GABRD could be a novel prognostic predictor for CRC that deserves further investigation
    corecore