15 research outputs found

    STCF Conceptual Design Report: Volume 1 -- Physics & Detector

    No full text
    International audienceThe Super τ\tau-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×1035cm−2s−10.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1} or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present τ\tau-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies

    STCF Conceptual Design Report: Volume 1 -- Physics & Detector

    No full text
    International audienceThe Super τ\tau-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×1035cm−2s−10.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1} or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present τ\tau-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies
    corecore