3 research outputs found

    Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm

    No full text
    Photoacoustic tomography (PAT) is an emerging molecular imaging modality. Here, we demonstrate use of semiconductor copper sulfide nanoparticles (CuS NPs) for PAT with an Nd:YAG laser at a wavelength of 1064 nm. CuS NPs allowed visualization of mouse brain after intracranial injection, rat lymph nodes 12 mm below the skin after interstitial injection, and CuS NP-containing agarose gel embedded in chicken breast muscle at a depth of ∼5 cm. This imaging approach has great potential for molecular imaging of breast cancer

    Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm

    No full text
    Photoacoustic tomography (PAT) is an emerging molecular imaging modality. Here, we demonstrate use of semiconductor copper sulfide nanoparticles (CuS NPs) for PAT with an Nd:YAG laser at a wavelength of 1064 nm. CuS NPs allowed visualization of mouse brain after intracranial injection, rat lymph nodes 12 mm below the skin after interstitial injection, and CuS NP-containing agarose gel embedded in chicken breast muscle at a depth of ∼5 cm. This imaging approach has great potential for molecular imaging of breast cancer

    Spatial and Temporal Confined Photothermolysis of Cancer Cells Mediated by Hollow Gold Nanospheres Targeted to Epidermal Growth Factor Receptors

    No full text
    To date, a few studies have investigated the potential use of a short-pulsed laser in selective tumor cell destruction or its mechanism of cell killing. Computer simulation of the spatial and temporal profiles of temperature elevation after pulsed laser irradiation on an infinitesimal point source estimated that the temperature reached its highest point at ∼35 ns after a single 15 ns laser pulse. Moreover, temperature elevation was confined to a radius of sub-micrometer and returned to baseline within 100 ns. To investigate the effect of 15 ns laser pulses on A431 tumor cells, we conjugated hollow gold nanospheres (HAuNSs) to an antibody (C225) directed at the epithelial growth factor receptor. The resulting nanoparticles, C225-HAuNSs, bound to the cell membrane, internalized, and distributed throughout the cytoplasm, with some nanoparticles transported to the vicinity of the nuclear membrane. On using an optical microscope mounted to a tunable pulsed Ti:sapphire laser, rapid and extensive damage of live cancer cells was observed, whereas irradiation of A431 cells pretreated with nontargeted HAuNSs with a pulsed laser or pretreated with C225-HAuNSs with a continuous-wave laser-induced minimal cellular damage. Furthermore, after a single 15 ns laser pulse, C225-HAuNS-treated A431 cells cocultured with 3T3 fibroblasts showed signs of selective destruction. Thus, compared with a continuous-wave laser, shots of a short-pulsed laser were the most damaging to tumor cells that bound HAuNSs and generated the least heat to the surrounding environment. This mode of action by a short-pulsed laser on cancer cells (i.e., confined photothermolysis) may have potential applications in selective tumor cell destruction
    corecore