17 research outputs found

    Mitigating artifacts via half-time reconstruction in thermoacoustic tomography

    Get PDF
    Thermoacoustic tomography (TAT) is an ultrasound-mediated biophotonic imaging modality with great potential for a wide range of biomedical imaging applications. In this work, we demonstrate that half-time reconstruction approaches for TAT can mitigate image artifacts due to heterogeneous acoustic properties of an object. We also discuss how half-time reconstruction approaches permit explicit control of statistically complementary information in the measurement data, which can facilitate the reduction of image variances

    Half-time image reconstruction in thermoacoustic tomography

    Get PDF
    Thermoacoustic tomography (TAT) is an emerging imaging technique with great potential for a wide range of biomedical imaging applications. We propose and investigate reconstruction approaches for TAT that are based on the half-time reflectivity tomography paradigm. We reveal that half-time reconstruction approaches permit for the explicit control of statistically complementary information that can result in the optimal reduction of image variances. We also show that half-time reconstruction approaches can mitigate image artifacts due to heterogeneous acoustic properties of an object. Reconstructed images and numerical results produced from simulated and experimental TAT measurement data are employed to demonstrate these effects

    Mitigating artifacts via half-time reconstruction in thermoacoustic tomography

    Get PDF
    Thermoacoustic tomography (TAT) is an ultrasound-mediated biophotonic imaging modality with great potential for a wide range of biomedical imaging applications. In this work, we demonstrate that half-time reconstruction approaches for TAT can mitigate image artifacts due to heterogeneous acoustic properties of an object. We also discuss how half-time reconstruction approaches permit explicit control of statistically complementary information in the measurement data, which can facilitate the reduction of image variances

    Dual Energy Spectral CT Imaging for Colorectal Cancer Grading: A Preliminary Study

    Get PDF
    ObjectivesTo assess the diagnostic value of dual energy spectral CT imaging for colorectal cancer grading using the quantitative iodine density measurements in both arterial phase (AP) and venous phase (VP).Methods81 colorectal cancer patients were divided into two groups based on their pathological findings: a low grade group including well (n = 13) and moderately differentiated cancer (n = 24), and a high grade group including poorly differentiated (n = 42) and signet ring cell cancer (n = 2). Iodine density (ID) in the lesions was derived from the iodine-based material decomposition (MD) image and normalized to that in the psoas muscle to obtain normalized iodine density (NID). The difference in ID and NID between AP and VP was calculated.ResultsThe ID and NID values of the low grade cancer group were, 14.65±3.38mg/mL and 1.70±0.33 in AP, and 21.90±3.11mg/mL and 2.05± 0.32 in VP, respectively. The ID and NID values for the high grade cancer group were 20.63±3.72mg/mL and 2.95±0.72 in AP, and 26.27±3.10mg/mL and 3.51±1.12 in VP, respectively. There was significant difference for ID and NID between the low grade and high grade cancer groups in both AP and VP (all p<0.001). ROC analysis indicated that NID of 1.92 in AP provided 70.3% sensitivity and 97.7% specificity in differentiating low grade cancer from high grade cancer.ConclusionsThe quantitative measurement of iodine density in AP and VP can provide useful information to differentiate low grade colorectal cancer from high grade colorectal cancer with NID in AP providing the greatest diagnostic value

    Half-time image reconstruction in thermoacoustic tomography

    Get PDF
    Thermoacoustic tomography (TAT) is an emerging imaging technique with great potential for a wide range of biomedical imaging applications. We propose and investigate reconstruction approaches for TAT that are based on the half-time reflectivity tomography paradigm. We reveal that half-time reconstruction approaches permit for the explicit control of statistically complementary information that can result in the optimal reduction of image variances. We also show that half-time reconstruction approaches can mitigate image artifacts due to heterogeneous acoustic properties of an object. Reconstructed images and numerical results produced from simulated and experimental TAT measurement data are employed to demonstrate these effects

    Half-time image reconstruction in thermoacoustic tomography

    No full text

    Ground- And excited-state characteristics in photovoltaic polymer N2200

    No full text
    As a classical polymer acceptor material, N2200 has received extensive attention and research in the field of polymer solar cells (PSCs). However, the intrinsic properties of ground- and excited-states in N2200, which are critical for the application of N2200 in PSCs, remain poorly understood. In this work, the ground- and excited-state properties of N2200 solution and film were studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory (TD-DFT) calculations. The transition mechanism of absorption peaks of N2200 was evaluated through the natural transition orbitals (NTOs) and hole-electron population analysis by TD-DFT. Time-resolved photoluminescence (TRPL) study shows that the lifetimes of singlet excitons in N2200 chlorobenzene solution and film are ∼90 ps and ∼60 ps, respectively. Considering the absolute quantum yield of N2200 film, we deduce that the intrinsic lifetime of singlet exciton can be as long as ∼20 ns. By comparing the TRPL and transient absorption (TA) kinetics, we find that the decay of singlet excitons in N2200 solution is dominated by a fast non-radiative decay process, and the component induced by intersystem crossing is less than 5%. Besides that, the annihilation radius, annihilation rate and diffusion length of singlet excitons in N2200 film were evaluated as 3.6 nm, 2.5 × 10−9cm3s−1and 4.5 nm, respectively. Our work provides comprehensive information on the excited states of N2200, which is helpful for the application of N2200 in all-PSCs

    Excited-state properties of Y-series small molecule semiconductors

    No full text
    The emergence of the Y series small molecule semiconductors, Y6 and its derivatives, have significantly improved the performance of polymer solar cells (PSCs). However, the excited-state properties of these Y-series small molecule semiconductors which are highly important for designing high-performance PSCs, need to be illustrated. In this work, the excited-state properties and electronic structures of the Y-series small molecules (Y5, Y6, Y10, N3, Y6-BO-4F, and Y6-BO-4Cl) have been systematically studied by using steady-state and time-resolved spectroscopies and quantum chemical calculations. It is shown that the influence of alkyl chains at the nitrogen atom of the pyrrole ring is weak for the electron affinities, ionization potentials, electron and hole reorganization energies and singlet exciton lifetime of Y molecules. Meanwhile, these parameters are found to be varied with the types of electron-deficient termini. Moreover, we find that Y10 and Y5 have the shortest singlet exciton lifetime in solution and the longest singlet exciton lifetime in film (~1100 ps), suggesting the engineering of electron-deficient termini can significantly influence the excited-state lifetime in solution and film. Our work could provide a guideline for designing Y-series acceptor materials for high-performance polymer solar cells

    Variation of Clumping Index With Zenith Angle for Forest Canopies

    No full text
    International audienc
    corecore