96 research outputs found

    Uncovering a Solvent-Controlled Preferential Growth of Buckminsterfullerene (C60) Nanowires

    Full text link
    The fullerene (C60) nanowires, which possess a highly unusual morphology featured by a prism-like central core and three nanobelt-like wings joined along the growth direction to give an overall Y-shaped cross section, have been studied. The experimental observation coupled with theoretical calculation have enabled us to elucidate both the role of the fullerene and of the solvent in the crystallization process, thus opening up an opportunity for the in-depth understanding of the crystal growth mechanism. More generally, the method developed in this work could be extended into understanding the growth of other inorganic nanowires that have both host and guest molecules involved in their crystal lattices.Comment: 25 pages, 9 figure

    Enhancement on the hardness and oxidation resistance property of TiN/Ag composite films for high temperature applications by addition of Si

    Get PDF
    Titanium nitride and silver (TiN/Ag) composite films exhibited the excellent self-lubricating properties in a wide temperature range due to the formation of the Ag rich tribolayer in the contact. However, Ag addition usually reduces the hardness and oxidation resistance properties of the films. In this paper, TiN/Ag/Si3N4 composite films were deposited using RF magnetron co-sputtering system to improve the mechanical and oxidation resistance properties of the TiN/Ag film. XRD and TEM analysis revealed that three-phases could be identified on the TiN/Ag/Si3N4 films: face-centered cubic (fcc) TiN, fcc-Ag and amorphous Si3N4 phases. The hardness of the TiN/ Ag film increased from ~16 GPa to ~24 GPa for TiN/Ag/Si3N4 with 15.3 at.% of Si due to the formation of the nanocomposite structure. The addition of Si allowed a significant improvement on the oxidation resistance temperature, and effectively avoiding of Ag diffusion, and thereby contributing the stability of the hardness of the film after annealing treatment.info:eu-repo/semantics/publishedVersio

    Symmetry-Preserving Program Representations for Learning Code Semantics

    Full text link
    Large Language Models (LLMs) have shown promise in automated program reasoning, a crucial aspect of many security tasks. However, existing LLM architectures for code are often borrowed from other domains like natural language processing, raising concerns about their generalization and robustness to unseen code. A key generalization challenge is to incorporate the knowledge of code semantics, including control and data flow, into the LLM architectures. Drawing inspiration from examples of convolution layers exploiting translation symmetry, we explore how code symmetries can enhance LLM architectures for program analysis and modeling. We present a rigorous group-theoretic framework that formally defines code symmetries as semantics-preserving transformations and provides techniques for precisely reasoning about symmetry preservation within LLM architectures. Using this framework, we introduce a novel variant of self-attention that preserves program symmetries, demonstrating its effectiveness in generalization and robustness through detailed experimental evaluations across different binary and source code analysis tasks. Overall, our code symmetry framework offers rigorous and powerful reasoning techniques that can guide the future development of specialized LLMs for code and advance LLM-guided program reasoning tasks

    Effect of sand on the vacuum consolidation of dredged slurry

    Get PDF
    Vacuum preloading is often used to improve the geotechnical properties of dredged slurry. Although the performance of this method has improved with rapidly developing technology, soil columns usually formed on the drainage boundary induce the decrease of permeability around the boundary, thereby limiting the further development of this method. To address this issue, this paper proposes a method for pretreating the slurry combined with sand prior to vacuum consolidation. This method partially replaces the fine particles with sand to reduce the formation of soil columns. Two groups of vacuum preloading tests were performed to investigate the effect of sand content and sand grain size on the vacuum consolidation of dredged slurry. The test results revealed that for a given sand grain size, increasing the sand content of the sand-slurry mixture increased the pore water drainage and accelerated the dissipation of pore water pressure, thereby increasing the vane shear strength. In contrast, for a constant sand content, the samples containing coarse sand exhibited increased pore water drainage and accelerated dissipation of pore water pressure, thereby increasing the vane shear strength of the soil

    Nanoparticulate PdZn as a Novel Catalyst for ZnO Nanowire Growth.

    Get PDF
    ZnO nanowires have been grown by chemical vapour deposition (CVD) using PdZn bimetallic nanoparticles to catalyse the process. Nanocatalyst particles with mean particle diameters of 2.6 ± 0.3 nm were shown to catalyse the growth process, displaying activities that compare well with those reported for sputtered systems. Since nanowire diameters are linked to catalyst morphology, the size-control we are able to exhibit during particle preparation represents an advantage over existing approaches in terms of controlling nanowire dimensions, which is necessary in order to utilize the nanowires for catalytic or electrical applications.(See supplementary material 1).RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Management Letter, Year Ended June 30, 1999

    Get PDF
    The intestinal microbiome is essential in humans to maintain physiological balance and nutrition metabolism. Laparoscopic cholecystectomy due to gallstone disease and cholecystitis can cause intestinal microbial dysbiosis, and following bile acid metabolism dysfunction, positions the patient at high risk of colorectal cancer. However, little is known regarding intestinal microbiota characteristics in post-cholecystectomy patients. Here, we compared the microbial composition of cholecystectomy patients with that of a healthy population. We determined that cholecystectomy eliminated aging-associated fecal commensal microbiota and further identified several bile acid metabolism-related bacteria as contributors of colorectal cancer incidence via elevation of secondary bile acids.Significance statementWe identified aging-associated fecal microbiota in a healthy population, which was lost in cholecystectomy patients. Absent intestinal bacteria, such as Bacteroides, were negatively related to secondary bile acids and may be a leading cause of colorectal cancer incidence in cholecystectomy patients. Our study provides novel insight into the connection between cholecystectomy-altered gut microbiota and colorectal carcinoma, which is of value for colorectal cancer diagnosis and management

    Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphology, structure and temperature-cycling tribological properties

    Get PDF
    Nowadays there is the need to avoid the excessive consumption of liquid lubricant oils, as they are harmful to the environment and hard to disposal. Self-lubricant films have been seen as the sustainable solution to achieve a long-term lubrication under high temperature-cycling conditions. In this manuscript, multilayer Mo2N-Ag/SiNx films with a fixed modulation ratio (thickness of Mo2N-Ag to SiNx) of 3:1, with changing modulation period (Λ, thickness of Mo2N-Ag and SiNx) from 8 to 200 nm were produced to achieve an effective balance between the lubricious phase diffusion control and the adequate formation of the low friction tribo-layers. Results showed that a dual-phase of fcc-Mo2N and fcc-Ag co-existed in Mo2N-Ag layers, while the SiNx layer exhibited an amorphous character. Both room temperature (RT) lubricant and wear-resistance properties of the films were improved by increasing Λ from 8 to 64 nm, while a further increase of Λ degraded the wear-resistance properties. The multilayer film at Λ = 64 nm exhibited an excellent RT-500 °C temperature-cycling tribological properties. Mechanical properties and the synergistic effect of both modulation layers were the cause for the improvement of the tribological properties.Supported by the National Natural Science Foundation of China, China (51801081, 52071159, 52171071, 52172090); Portugal National Funds through FCT project, Portugal (2021.04115); Outstanding University Young Teachers of ‘‘Qing Lan Project” of Jiangsu Province, China; Excellent Talents of ‘‘Shenlan Project” of Jiangsu University of Science and Technology, China; China Merchants Marine Scientific Research and Innovation Fund, China. Filipe Fernandes acknowledges the funding received in the aim of the projects: MCTool21 - ref. ‘‘POCI-01-0247- FEDER-045940”, CEMMPRE – ref. ‘‘UIDB/00285/2020” and SMARTLUB – ref. ‘‘POCI- 01-0145-FEDER-031807”.info:eu-repo/semantics/publishedVersio

    Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications

    Get PDF
    Flexible electronics are a very promising technology for various applications. Several types of flexible devices have been developed, but there has been limited research on flexible electromechanical systems (MEMS). Surface acoustic wave (SAW) devices are not only an essential electronic device, but also are the building blocks for sensors and MEMS. Here we report a method of making flexible SAW devices using ZnO nanocrystals deposited on a cheap and bendable plastic film. The flexible SAW devices exhibit two wave modes - the Rayleigh and Lamb waves with resonant frequencies of 198.1 MHz and 447.0 MHz respectively, and signal amplitudes of 18 dB. The flexible devices have a high temperature coefficient of frequency, and are thus useful as sensitive temperature sensors. Moreover, strong acoustic streaming with a velocity of 3.4 cm/s and particle concentration using the SAW have been achieved, demonstrating the great potential for applications in electronics and MEMS
    corecore