257 research outputs found

    A simple one-dimensional model of heat conduction which obeys Fourier's law

    Full text link
    We present the computer simulation results of a chain of hard point particles with alternating masses interacting on its extremes with two thermal baths at different temperatures. We found that the system obeys Fourier's law at the thermodynamic limit. This result is against the actual belief that one dimensional systems with momentum conservative dynamics and nonzero pressure have infinite thermal conductivity. It seems that thermal resistivity occurs in our system due to a cooperative behavior in which light particles tend to absorb much more energy than the heavier ones.Comment: 5 pages, 4 figures, to be published in PR

    Identification of Differentially Expressed Proteins in Murine Embryonic and Postnatal Cortical Neural Progenitors

    Get PDF
    BACKGROUND: The central nervous system (CNS) develops from a heterogeneous pool of neural stem and progenitor cells (NSPC), the underlying differences among which are poorly understood. The study of NSPC would be greatly facilitated by the identification of additional proteins that mediate their function and that would distinguish amongst different progenitor populations. METHODOLOGY/PRINCIPAL FINDINGS: To identify membrane and membrane-associated proteins expressed by NSPC, we used a proteomics approach to profile NSPC cultured as neurospheres (NS) isolated from the murine cortex during a period of neurogenesis (embryonic day 11.5, E11.5), as compared to NSPC isolated at a peak of gliogenesis (postnatal day 1, P0) and to differentiated E11.5 NS. 54 proteins were identified with high expression in E11.5 NS, including the TrkC receptor, several heterotrimeric G proteins, and the Neogenin receptor. 24 proteins were identified with similar expression in E11.5 and P0 NS over differentiated E11.5 NS, and 13 proteins were identified with high expression specifically in P0 NS compared to E11.5 NS. To illustrate the potential relevance of these identified proteins to neural stem cell biology, the function of Neogenin was further studied. Using Fluorescence Activated Cell Sorting (FACS) analysis, expression of Neogenin was associated with a self-renewing population present in both E11.5 and adult subventricular zone (SVZ) NS but not in P0 NS. E11.5 NS expressed a putative Neogenin ligand, RGMa, and underwent apoptosis when exposed to a ligand-blocking antibody. CONCLUSIONS/SIGNIFICANCE: There are fundamental differences between the continuously self-renewing and more limited progenitors of the developing cortex. We identified a subset of differentially expressed proteins that serve not only as a set of functionally important proteins, but as a useful set of markers for the subsequent analysis of NSPC. Neogenin is associated with the continuously self-renewing and neurogenic cells present in E11.5 cortical and adult SVZ NS, and the Neogenin/RGMa receptor/ligand pair may regulate cell survival during development

    CCL2 Accelerates Microglia-Mediated Aβ Oligomer Formation and Progression of Neurocognitive Dysfunction

    Get PDF
    The linkages between neuroinflammation and Alzheimer's disease (AD) pathogenesis are well established. What is not, however, is how specific immune pathways and proteins affect the disease. To this end, we previously demonstrated that transgenic over-expression of CCL2 enhanced microgliosis and induced diffuse amyloid plaque deposition in Tg2576 mice. This rodent model of AD expresses a Swedish beta-amyloid (Abeta) precursor protein mutant.We now report that CCL2 transgene expression accelerates deficits in spatial and working memory and hippocampal synaptic transmission in beta-amyloid precursor protein (APP) mice as early as 2-3 months of age. This is followed by increased numbers of microglia that are seen surrounding Abeta oligomers. CCL2 does not suppress Abeta degradation. Rather, CCL2 and tumor necrosis factor-alpha directly facilitated Abeta uptake, intracellular Abeta oligomerization, and protein secretion.We posit that CCL2 facilitates Abeta oligomer formation in microglia and propose that such events accelerate memory dysfunction by affecting Abeta seeding in the brain

    Can disorder induce a finite thermal conductivity in 1D lattices?

    Full text link
    We study heat conduction in one dimensional mass disordered harmonic and anharmonic lattices. It is found that the thermal conductivity κ\kappa of the disordered anharmonic lattice is finite at low temperature, whereas it diverges as κN0.43\kappa \sim N^{0.43} at high temperature. Moreover, we demonstrate that a unique nonequilibrium stationary state in the disordered harmonic lattice does not exist at all.Comment: 4 pages with 4 eps figure
    corecore