41 research outputs found

    Assessment of oral and overall health parameters using the SillHa Oral Wellness System

    Get PDF
    OBJECTIVE: The study evaluated use of a multipoint saliva analyzer to assess patient wellness in a contemporary dental practice setting. STUDY DESIGN: Unstimulated saliva from a diverse 104 patient cohort was analyzed using the SillHa Oral Wellness System. The device measures the following 7 analytes present in the patient\u27s oral rinse: cariogenic bacteria, acidity, buffer capacity, blood, leukocytes, protein, and ammonia. Data obtained were compared with validated clinical assessment data independently provided by credentialed dental professionals. RESULTS: Measured leukocyte and protein levels were higher in patients with periodontal disease and/or deep gingival pockets. Patients with a history of cancer and/or diabetes presented with higher ammonia and lower leukocyte levels. Acidity levels were higher in patients using multiple xerogenic medications and lower in patients with a history of sleep apnea. Sex differences showed female patients exhibiting higher acidity, lower buffer capacity, and lower ammonia than male patients. Increasing age is associated with elevated buffer capacity. CONCLUSIONS: Multipoint saliva analyzers such as the one used in this study, along with clinical practice examination and medical history, can provide rapid salivary component analysis that augments treatment planning. A follow-up multisite study would provide the opportunity to test this analyzer in clinical sites with different practice workflows

    Bacterial sex in dental plaque

    Get PDF
    Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity

    Subgingival Microbiome and Specialized Pro-Resolving Lipid Mediator Pathway Profiles Are Correlated in Periodontal Inflammation

    Get PDF
    Failure of resolution pathways in periodontitis is reflected in levels of specialized pro-resolving lipid mediators (SPMs) and SPM pathway markers but their relationship with the subgingival microbiome is unclear. This study aimed to analyze and integrate lipid mediator level, SPM receptor gene expression and subgingival microbiome data in subjects with periodontitis vs. healthy controls. The study included 13 periodontally healthy and 15 periodontitis subjects that were evaluated prior to or after non-surgical periodontal therapy. Samples of gingival tissue and subgingival plaque were collected prior to and 8 weeks after non-surgical treatment; only once in the healthy group. Metabololipidomic analysis was performed to measure levels of SPMs and other relevant lipid mediators in gingiva. qRT-PCR assessed relative gene expression (2-ΔΔCT) of known SPM receptors. 16S rRNA sequencing evaluated the relative abundance of bacterial species in subgingival plaque. Correlations between lipid mediator levels, receptor gene expression and bacterial abundance were analyzed using the Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) and Sparse Partial Least Squares (SPLS) methods. Profiles of lipid mediators, receptor genes and the subgingival microbiome were distinct in the three groups. The strongest correlation existed between lipid mediator profile and subgingival microbiome profile. Multiple lipid mediators and bacterial species were highly correlated (correlation coefficient ≥0.6) in different periodontal conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to healthy controls revealed that one bacterial species, Corynebacterium durum, and five lipid mediators, 5(S)6(R)-DiHETE, 15(S)-HEPE, 7-HDHA, 13-HDHA and 14-HDHA, were identified in both conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to after treatment revealed that one bacterial species, Anaeroglobus geminatus, and four lipid mediators, 5(S)12(S)-DiHETE, RvD1, Maresin 1 and LTB4, were identified in both conditions. Four Selenomonas species were highly correlated with RvD1, RvE3, 5(S)12(S)-DiHETE and proinflammatory mediators in the periodontitis after treatment group. Profiles of lipid mediators, receptor gene and subgingival microbiome are associated with periodontal inflammation and correlated with each other, suggesting inflammation mediated by lipid mediators influences microbial composition in periodontitis. The role of correlated individual lipid mediators and bacterial species in periodontal inflammation have to be further studied

    Genetic exchange and reassignment in Porphyromonas gingivalis

    No full text
    Porphyromonas gingivalis is considered a keystone pathogen in adult periodontitis but has also been associated with systemic diseases. It has a myriad of virulence factors that differ between strains. Genetic exchange and intracellular genome rearrangements may be responsible for the variability in the virulence of P. gingivalis. The present review discusses how the exchange of alleles can convert this bacterium from commensalistic to pathogenic and potentially shapes the host-microbe environment from homeostasis to dysbiosis. It is likely that genotypes of P. gingivalis with increased pathogenic adaptations may spread in the human population with features acquired from a common pool of alleles. The exact molecular mechanisms that trigger this exchange are so far unknown but they may be elicited by environmental pressure

    A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion

    No full text
    Haloacid dehalogenase (HAD) family phosphatases are widespread in prokaryotes and are generally involved in metabolic processes. Porphyromonas gingivalis, an invasive periodontal pathogen, secretes the HAD family phosphoserine phosphatase SerB653 when in contact with gingival epithelial cells. Here we characterize the structure and enzymatic activity of SerB653 and show that a SerB653 allelic replacement mutant of P. gingivalis is deficient in internalization and persistence in gingival epithelial cells. In contrast, mutation of a second HAD family serine phosphatase of P. gingivalis (SerB1170), or of a serine transporter, did not affect invasion. A pull-down assay identified GAPDH and heat-shock protein 90 as potential substrates for SerB653. Furthermore, exogenous phosphatase regulated microtubule dynamics in host cells. These data indicate that P. gingivalis has adapted a formerly metabolic enzyme to facilitate entry into host cells by modulating host cytoskeletal architecture. Our findings define a virulence-related role of a HAD family phosphatase and reveal an invasin of an important periodontal pathogen

    Conjugal Transfer of Chromosomal DNA Contributes to Genetic Variation in the Oral Pathogen Porphyromonas gingivalisâ–¿

    No full text
    Porphyromonas gingivalis is a major oral pathogen that contributes to the development of periodontal disease. There is a significant degree of genetic variation among strains of P. gingivalis, and the population structure has been predicted to be panmictic, indicating that horizontal DNA transfer and recombination between strains are likely. The molecular events underlying this genetic exchange are not understood, although a putative type IV secretion system is present in the genome sequence of strain W83, implying that DNA conjugation may be responsible for genetic transfer in these bacteria. In this study, we provide in vitro evidence for the horizontal transfer of DNA using plasmid- and chromosome-based assays. In the plasmid assays, Bacteroides-derived shuttle vectors were tested for transfer from P. gingivalis strains into Escherichia coli. Of the eight strains tested, five were able to transfer DNA into E. coli by a mechanism most consistent with conjugation. Additionally, strains W83 and 33277 tested positive for the transfer of chromosomally integrated antibiotic resistance markers. Ten chimeras resulting from the chromosomal transfer assay were further analyzed by Southern hybridization and were shown to have exchanged DNA fragments of between 1.1 and 5.6 kb, but the overall strain identity remained intact. Chimeras showed phenotypic changes in the ability to accrete into biofilms, implying that DNA transfer events are sufficient to generate measurable changes in complex behaviors. This ability to transfer chromosomal DNA between strains may be an adaptation mechanism in the complex environment of the host oral cavity

    Role of the Clp System in Stress Tolerance, Biofilm Formation, and Intracellular Invasion in Porphyromonas gingivalisâ–¿

    No full text
    Clp proteases and chaperones are ubiquitous among prokaryotes and eukaryotes, and in many pathogenic bacteria the Clp stress response system is also involved in regulation of virulence properties. In this study, the roles of ClpB, ClpC, and ClpXP in stress resistance, homotypic and heterotypic biofilm formation, and intracellular invasion in the oral opportunistic pathogen Porphyromonas gingivalis were investigated. Absence of ClpC and ClpXP, but not ClpB, resulted in diminished tolerance to high temperatures. Response to oxidative stress was not affected by the loss of any of the Clp proteins. The clpC and clpXP mutants demonstrated elevated monospecies biofilm formation, and the absence of ClpXP also enhanced heterotypic P. gingivalis-Streptococcus gordonii biofilm formation. All clp mutants adhered to gingival epithelial cells to the same level as the wild type; however, ClpC and ClpXP were found to be necessary for entry into host epithelial cells. ClpB did not play a role in entry but was required for intracellular replication and survival. ClpXP negatively regulated the surface exposure of the minor fimbrial (Mfa) protein subunit of P. gingivalis, which stimulates biofilm formation but interferes with epithelial cell entry. Collectively, these results show that the Clp protease complex and chaperones control several processes that are important for the colonization and survival of P. gingivalis in the oral cavity
    corecore