342 research outputs found

    Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases

    Get PDF
    Cerebrovascular disease involves various medical disorders that obstruct brain blood vessels or deteriorate cerebral circulation, resulting in ischemic or hemorrhagic stroke. Nowadays, platinum coils with or without biological modification have become routine embolization devices to reduce the risk of cerebral aneurysm bleeding. Additionally, many intracranial stents, flow diverters, and stent retrievers have been invented with uniquely designed structures. To accelerate the translation of these devices into clinical usage, an in‐depth understanding of the mechanical and material performance of these metal‐based devices is critical. However, considering the more distal location and tortuous anatomic characteristics of cerebral arteries, present devices still risk failing to arrive at target lesions. Consequently, more flexible endovascular devices and novel designs are under urgent demand to overcome the deficiencies of existing devices. Herein, the pros and cons of the current structural designs are discussed when these devices are applied to the treatment of diseases ranging broadly from hemorrhages to ischemic strokes, in order to encourage further development of such kind of devices and investigation of their use in the clinic. Moreover, novel biodegradable materials and drug elution techniques, and the design, safety, and efficacy of personalized devices for further clinical applications in cerebral vasculature are discussed.Peer reviewe

    The Combination of RAD001 and NVP-BEZ235 Exerts Synergistic Anticancer Activity against Non-Small Cell Lung Cancer In Vitro and In Vivo

    Get PDF
    The phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit PI3K, mTOR or both are currently under development. The mTOR allosteric inhibitor, RAD001, and the PI3K/mTOR dual kinase inhibitor, BEZ235, are examples of these agents. We were interested in developing strategies to enhance mTOR-targeted caner therapy. In this study, we found that BEZ235 alone effectively inhibited the growth of rapamycin-resistant cancer cells. Interestingly, the combination of sub-optimal concentrations of RAD001 and BEZ235 exerted synergistic inhibition of the growth of human lung cancer cells along with induction of apoptosis and G1 arrest. Furthermore, the combination was also more effective than either agent alone in inhibiting the growth of lung cancer xenografts in mice. The combination showed enhanced effects on inhibiting mTOR signaling and reducing the expression of c-Myc and cyclin D1. Taken together, our results suggest that the combination of RAD001 and BEZ235 is a novel strategy for cancer therapy

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    JKA97, a Novel Benzylidene Analog of Harmine, Exerts Anti-Cancer Effects by Inducing G1 Arrest, Apoptosis, and p53-Independent Up-Regulation of p21

    Get PDF
    JKA97, a benzylidene analog of harmine, has been found to be a promising drug candidate for human cancer therapy, although the underlying molecular mechanisms have not been fully demonstrated. In this study, we evaluated the effects of JKA97 on human breast cancer cells in vitro and in vivo. JKA97 inhibited the growth and proliferation of MCF7 (p53 wild-type), MCF7 (p53 knockdown), and MDA-MB-468 (p53 mutant) cells in a dose-dependent manner. Treatment with JKA97 arrested breast cancer cells in G1 phase and induced apoptosis. JKA97 also significantly suppressed the growth of MCF7 and MDA-MB-468 xenograft tumors. It regulated the expression levels of G1 phase regulators, such as p21, p27, cyclinE, and cylinD1. JKA97 activated p21 transcription, independent of p53, but had little effect on p21 protein stability/degradation. In summary, our results suggest that JKA97 inhibits human breast cancer cell growth through activating p21, independent of p53, which provides a basis for developing this compound as a novel drug for human breast cancer therapy

    Apoptosis Induced by Cytoskeletal Disruption Requires Distinct Domains of MEKK1

    Get PDF
    MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the MAPK JNK and is required for microtubule inhibitor-induced apoptosis in B cells. Here, we find that apoptosis induced by actin disruption via cytochalasin D and by the protein phosphatase 1/2A inhibitor okadaic acid also requires MEKK1 activation. To elucidate the functional requirements for activation of the MEKK1-dependent apoptotic pathway, we created mutations within MEKK1. MEKK1-deficient cells were complemented with MEKK1 containing mutations in either the ubiquitin interacting motif (UIM), plant homeodomain (PHD), caspase cleavage site or the kinase domain at near endogenous levels of expression and tested for their sensitivity to each drug. We found that both the kinase activity and the PHD domain of MEKK1 are required for JNK activation and efficient induction of apoptosis by drugs causing cytoskeletal disruption. Furthermore, we discovered that modification of MEKK1 and its localization depends on the integrity of the PHD
    corecore