8 research outputs found

    Using spin to understand the formation of LIGO's black holes

    Full text link
    With the detection of four candidate binary black hole (BBH) mergers by the Advanced LIGO detectors thus far, it is becoming possible to constrain the properties of the BBH merger population in order to better understand the formation of these systems. Black hole (BH) spin orientations are one of the cleanest discriminators of formation history, with BHs in dynamically formed binaries in dense stellar environments expected to have spins distributed isotropically, in contrast to isolated populations where stellar evolution is expected to induce BH spins preferentially aligned with the orbital angular momentum. In this work we propose a simple, model-agnostic approach to characterizing the spin properties of LIGO's BBH population. Using measurements of the effective spin of the binaries, which is LIGO's best constrained spin parameter, we introduce a simple parameter to quantify the fraction of the population that is isotropically distributed, regardless of the spin magnitude distribution of the population. Once the orientation characteristics of the population have been determined, we show how measurements of effective spin can be used to directly constrain the underlying BH spin magnitude distribution. Although we find that the majority of the current effective spin measurements are too small to be informative, with LIGO's four BBH candidates we find a slight preference for an underlying population with aligned spins over one with isotropic spins (with an odds ratio of 1.1). We argue that it will be possible to distinguish symmetric and anti-symmetric populations at high confidence with tens of additional detections, although mixed populations may take significantly more detections to disentangle. We also derive preliminary spin magnitude distributions for LIGO's black holes, under the assumption of aligned or isotropic populations

    HLA-A*0206 with TLR3 Polymorphisms Exerts More than Additive Effects in Stevens-Johnson Syndrome with Severe Ocular Surface Complications

    Get PDF
    <div><h3>Background</h3><p>Stevens-Johnson syndrome (SJS) is an acute inflammatory vesiculobullous reaction of the skin and mucosa, often including the ocular surface, and toxic epidermal necrolysis (TEN) occurs with its progression. Although SJS/TEN is thought to be initiated by certain types of medication coupled with possible infection. In the present study we examined the multiplicative interaction(s) between HLA-A*0206 and 7 Toll-like receptor 3 (TLR3) Single-nucleotide polymorphisms (SNPs) in patients with SJS/TEN.</p> <h3>Principal Findings</h3><p>We analyzed the genotypes for HLA-A and 7 TLR3 SNPs in 110 Japanese SJS/TEN patients with severe ocular complications and 206 healthy volunteers to examine the interactions between the two loci. We found that HLA-A*0206 exhibited a high odds ratio for SJS/TEN (carrier frequency: OR = 5.1; gene frequency: OR = 4.0) and that there was a strong association with TLR3 rs.5743312T/T SNP (OR = 7.4), TLR3 rs.3775296T/T SNP (OR = 5.8), TLR3 rs.6822014G/G SNP (OR = 4.8), TLR3 rs.3775290A/A SNP (OR = 2.9), TLR3 rs.7668666A/A SNP (OR = 2.7), TLR3 rs.4861699G/G SNP (OR = 2.3), and TLR3 rs.11732384G/G SNP (OR = 1.9). There was strong linkage disequilibrium (LD) between rs.3775296 and rs.5743312 and between rs.7668666 and rs.3775290. The results of interaction analysis showed that the pair, HLA-A*0206 and TLR3 SNP rs3775296T/T, which exhibited strong LD with TLR3 rs.5743312, exerted more than additive effects (OR = 47.7). The other pairs, HLA-A*0206 and TLR3 rs.3775290A/A SNP (OR = 11.4) which was in strong LD with TLR3 rs7668666A/A SNP, and TLR3 rs4861699G/G SNP (OR = 7.6) revealed additive effects. Moreover, the combination HLA-A*0206 and TLR3 rs3775296T/T was stronger than the TLR3 rs6822014G/G and TLR3 rs3775290A/A pair, which reflected the interactions within the TLR3 gene alone.</p> <h3>Significance</h3><p>By interaction analysis, HLA-A*0206 and TLR3 SNP rs3775296T/T, which were in strong LD with TLR3 SNP rs5743312T/T, manifested more than additive effects that were stronger than the interactions within the TLR3 gene alone. Therefore, multiplicative interactions of HLA-A and TLR3 gene might be required for the onset of SJS/TEN with ocular complications.</p> </div

    Association between TLR3 SNPs and SJS/TEN with ocular complications.

    No full text
    a<p><i>P</i>-value for allele or genotype frequency comparisons between cases and controls using the chi-square test.</p>b<p>OR, odds ratio.</p>c<p>CI, confidence interval.</p

    Linkage disequilibria among the 7 <i>TLR3</i> SNPs.

    No full text
    <p>Strong linkage disequilibrium was observed between rs.3775296 and rs.5743312, and between rs.7668666 and rs.3775290.</p
    corecore